254 Synthetic Routes toN-Nitro
CH 2
N
NN
N
H 2 C CH 2
H 2 C CH 2
O 2 N NO 2
HO OH
NO 2
252
N
NN
N
H 2 C CH 2
H 2 C CH 2
O 2 N NO 2
CH 2
CH 2
O 2 NO N ONO 2
NO 2
256
AcO N OAc
NO 2
257
MeNH 2
NH 2
CH 2
NH 2
CH 2 NH 2
CH 2 NH 2
Ac 2 O
(CH 2 ) 6 N 4
Hale
nitrolysis
255
100 °C
- 2H 2 O, 16 %
HNO 3 , 0 °C
254
44 %
78 %
45 %
HNO 3
38 %
AcOH,
NaOAc
69 %
239
(DPT)
CH 3
253
N
NN
N
H 2 C
H 2 C
CH 2
CH 2
O 2 N NO 2
CH 3
O
NN
O
258
H 2 C
H 2 C
CH 2
CH 2
O 2 N NO 2
N
Figure 5.112 The chemistry of dimethylolnitramine (252)
converted to the more stable diacetate ester (257) on reaction with sodium acetate in acetic
anhydride.^188 1,3-Dinitroxydimethylnitramine (256) is present in the aqueous filtrate from both
the KA-process and E-process (Section 5.15.1).
5.15.4.3 The chemistry of linear nitramines
ONO 2
MeOH
60 %
(2 steps)
EtOH
15 %
(2 steps)
(CH 2 ) 6 N 4
104
247
(BSX)
HNO 3 , N 2 O 5
HNO 3 , Ac 2 O,
20 °C, 51 %
HNO 3 , Ac 2 O,
70 °C, 88 %
AcOH,
NaOAc
76 %
HNO 3
54 %
- Ac 2 O
- 97 % HNO 3 ,
25 °C
OAc
NO 2 NO 2 NO 2
O 2 NO
259
NNN
NO 2 NO 2 NO 2
O 2 NO
260
NNN
OAc
NO 2 NO 2 NO 2
AcO NNN
EtO
261
OAc
NO 2 NO 2 NO 2
NNN
MeO
262
OMe
NO 2 NO 2 NO 2
NNN
Figure 5.113 Linear nitramines from the nitrolysis of hexamine
The nitrolysis of hexamine can be used to obtain the linear nitramines (247), (259) and (260)
depending on the conditions and reagents used. Thus, the nitrolysis of hexamine with a mixture