Physical Foundations of Cosmology

(WallPaper) #1

  • PartIHomogeneousisotropicuniverse Unitsandconventionsxvii

  • 1Kinematicsanddynamicsofanexpandinguniverse

    • 1.1 Hubble law

    • 1.2 Dynamics of dust in Newtonian cosmology

      • 1.2.1 Continuity equation

      • 1.2.2 Acceleration equation

      • 1.2.3 Newtonian solutions



    • 1.3 From Newtonian to relativistic cosmology

      • 1.3.1 Geometry of an homogeneous, isotropic space

      • 1.3.2 The Einstein equations and cosmic evolution

      • 1.3.3 Friedmann equations

      • 1.3.4 Conformal time and relativistic solutions

      • 1.3.5 Milne universe

      • 1.3.6DeSitteruniverse





  • 2 Propagation of light and horizons

    • 2.1Lightgeodesics

    • 2.2 Horizons

    • 2.3 Conformal diagrams

    • 2.4 Redshift

      • 2.4.1 Redshift as a measure of time and distance



    • 2.5Kinematictests

      • 2.5.1Angulardiameter–redshiftrelation

      • 2.5.2Luminosity–redshiftrelation

      • 2.5.3 Number counts vi Contents

      • 2.5.4 Redshift evolution





  • 3 The hot universe

    • 3.1 The composition of the universe

    • 3.2 Brief thermal history

    • 3.3 Rudiments of thermodynamics

      • conservation laws and chemical potentials 3.3.1 Maximal entropy state, thermal spectrum,

      • 3.3.2 Energy density, pressure and the equation of state

      • 3.3.3 Calculating integrals

      • 3.3.4 Ultra-relativistic particles

      • 3.3.5 Nonrelativistic particles



    • 3.4 Lepton era

      • 3.4.1 Chemical potentials

      • 3.4.2 Neutrino decoupling and electron–positron annihilation



    • 3.5 Nucleosynthesis

      • 3.5.1 Freeze-out of neutrons

      • 3.5.2 “Deuterium bottleneck”

      • 3.5.3 Helium-4

      • 3.5.4 Deuterium

      • 3.5.5 The other light elements



    • 3.6 Recombination

      • 3.6.1 Helium recombination

      • 3.6.2 Hydrogen recombination: equilibrium consideration

      • 3.6.3 Hydrogen recombination: the kinetic approach





  • 4 The very early universe

    • 4.1 Basics

      • 4.1.1 Local gauge invariance

      • 4.1.2 Non-Abelian gauge theories



    • 4.2 Quantum chromodynamics and quark–gluon plasma

      • 4.2.1 Running coupling constant and asymptotic freedom

      • 4.2.2 Cosmological quark–gluon phase transition



    • 4.3 Electroweak theory

      • 4.3.1 Fermion content

      • 4.3.2 “Spontaneous breaking” ofU(1) symmetry

      • 4.3.3 Gauge bosons

      • 4.3.4 Fermion interactions

      • 4.3.5 Fermion masses

      • 4.3.6 CP violation



    • 4.4 “Symmetry restoration” and phase transitions Contents vii

      • 4.4.1 Effective potential

      • 4.4.2 U( 1 )model

      • 4.4.3 Symmetry restoration at high temperature

      • 4.4.4 Phase transitions

      • 4.4.5 Electroweak phase transition



    • 4.5 Instantons, sphalerons and the early universe

      • 4.5.1 Particle escape from a potential well

      • 4.5.2 Decay of the metastable vacuum

      • 4.5.3 The vacuum structure of gauge theories

        • fermion number 4.5.4 Chiral anomaly and nonconservation of the





    • 4.6 Beyond the Standard Model

      • 4.6.1 Dark matter candidates

      • 4.6.2 Baryogenesis

      • 4.6.3 Topological defects





  • 5 Inflation I: homogeneous limit

    • 5.1 Problem of initial conditions

    • 5.2 Inflation: main idea

    • 5.3 How can gravity become “repulsive”?

    • 5.4 How to realize the equation of statep≈−ε

      • 5.4.1 Simple example:V=^12 m^2 φ

      • 5.4.2 General potential: slow-roll approximation



    • 5.5 Preheating and reheating

      • 5.5.1 Elementary theory

      • 5.5.2 Narrow resonance

      • 5.5.3 Broad resonance

      • 5.5.4 Implications



    • 5.6 “Menu” of scenarios



  • Part II Inhomogeneous universe

  • 6 Gravitational instability in Newtonian theory

    • 6.1 Basic equations

    • 6.2 Jeans theory

      • 6.2.1 Adiabatic perturbations

      • 6.2.2 Vector perturbations

      • 6.2.3 Entropy perturbations



    • 6.3 Instability in an expanding universe

      • 6.3.1 Adiabatic perturbations

      • 6.3.2 Vector perturbations

      • 6.3.3 Self-similar solution viii Contents

      • 6.3.4 Cold matter in the presence of radiation or dark energy



    • 6.4 Beyond linear approximation

      • 6.4.1 Tolman solution

      • 6.4.2 Zel’dovich solution

      • 6.4.3 Cosmic web





  • 7 Gravitational instability in General Relativity

    • 7.1 Perturbations and gauge-invariant variables

      • 7.1.1 Classification of perturbations

      • 7.1.2 Gauge transformations and gauge-invariant variables

      • 7.1.3 Coordinate systems



    • 7.2 Equations for cosmological perturbations

    • 7.3 Hydrodynamical perturbations

      • 7.3.1 Scalar perturbations

      • 7.3.2 Vector and tensor perturbations



    • 7.4 Baryon–radiation plasma and cold dark matter

      • 7.4.1 Equations

      • 7.4.2 Evolution of perturbations and transfer functions





  • 8 Inflation II: origin of the primordial inhomogeneities

    • 8.1 Characterizing perturbations

    • 8.2 Perturbations on inflation (slow-roll approximation)

      • 8.2.1 Inside the Hubble scale

      • 8.2.2 The spectrum of generated perturbations

      • 8.2.3 Why do we need inflation?



    • 8.3 Quantum cosmological perturbations

      • 8.3.1 Equations

      • 8.3.2 Classical solutions

      • 8.3.3 Quantizing perturbations



    • 8.4 Gravitational waves from inflation

    • 8.5 Self-reproduction of the universe

    • 8.6 Inflation as a theory with predictive power



  • 9 Cosmic microwave background anisotropies

    • 9.1 Basics

    • 9.2 Sachs–Wolfe effect

    • 9.3 Initial conditions

    • 9.4 Correlation function and multipoles

    • 9.5 Anisotropies on large angular scales

    • 9.6 Delayed recombination and the finite thickness effect

    • 9.7 Anisotropies on small angular scales

      • 9.7.1 Transfer functions

      • 9.7.2 Multipole moments Contents ix

      • 9.7.3 Parameters

      • 9.7.4 Calculating the spectrum



    • 9.8 Determining cosmic parameters

    • 9.9 Gravitational waves

    • 9.10 Polarization of the cosmic microwave background

      • 9.10.1 Polarization tensor

      • 9.10.2 Thomson scattering and polarization

      • 9.10.3 Delayed recombination and polarization

      • 9.10.4 EandBpolarization modes and correlation functions



    • 9.11 Reionization

    • Bibliography



  • Expanding universe (Chapters 1 and 2)

  • Hot universe and nucleosynthesis (Chapter 3)

  • Particle physics and early universe (Chapter 4)

  • Inflation (Chapters 5 and 8)

  • Gravitational instability (Chapters 6 and 7)

  • CMB fluctuations (Chapter 9)

    • Index



Free download pdf