- PartIHomogeneousisotropicuniverse Unitsandconventionsxvii
- 1Kinematicsanddynamicsofanexpandinguniverse
- 1.1 Hubble law
- 1.2 Dynamics of dust in Newtonian cosmology
- 1.2.1 Continuity equation
- 1.2.2 Acceleration equation
- 1.2.3 Newtonian solutions
- 1.3 From Newtonian to relativistic cosmology
- 1.3.1 Geometry of an homogeneous, isotropic space
- 1.3.2 The Einstein equations and cosmic evolution
- 1.3.3 Friedmann equations
- 1.3.4 Conformal time and relativistic solutions
- 1.3.5 Milne universe
- 1.3.6DeSitteruniverse
- 2 Propagation of light and horizons
- 2.1Lightgeodesics
- 2.2 Horizons
- 2.3 Conformal diagrams
- 2.4 Redshift
- 2.4.1 Redshift as a measure of time and distance
- 2.5Kinematictests
- 2.5.1Angulardiameter–redshiftrelation
- 2.5.2Luminosity–redshiftrelation
- 2.5.3 Number counts vi Contents
- 2.5.4 Redshift evolution
- 3 The hot universe
- 3.1 The composition of the universe
- 3.2 Brief thermal history
- 3.3 Rudiments of thermodynamics
- conservation laws and chemical potentials 3.3.1 Maximal entropy state, thermal spectrum,
- 3.3.2 Energy density, pressure and the equation of state
- 3.3.3 Calculating integrals
- 3.3.4 Ultra-relativistic particles
- 3.3.5 Nonrelativistic particles
- 3.4 Lepton era
- 3.4.1 Chemical potentials
- 3.4.2 Neutrino decoupling and electron–positron annihilation
- 3.5 Nucleosynthesis
- 3.5.1 Freeze-out of neutrons
- 3.5.2 “Deuterium bottleneck”
- 3.5.3 Helium-4
- 3.5.4 Deuterium
- 3.5.5 The other light elements
- 3.6 Recombination
- 3.6.1 Helium recombination
- 3.6.2 Hydrogen recombination: equilibrium consideration
- 3.6.3 Hydrogen recombination: the kinetic approach
- 4 The very early universe
- 4.1 Basics
- 4.1.1 Local gauge invariance
- 4.1.2 Non-Abelian gauge theories
- 4.2 Quantum chromodynamics and quark–gluon plasma
- 4.2.1 Running coupling constant and asymptotic freedom
- 4.2.2 Cosmological quark–gluon phase transition
- 4.3 Electroweak theory
- 4.3.1 Fermion content
- 4.3.2 “Spontaneous breaking” ofU(1) symmetry
- 4.3.3 Gauge bosons
- 4.3.4 Fermion interactions
- 4.3.5 Fermion masses
- 4.3.6 CP violation
- 4.4 “Symmetry restoration” and phase transitions Contents vii
- 4.4.1 Effective potential
- 4.4.2 U( 1 )model
- 4.4.3 Symmetry restoration at high temperature
- 4.4.4 Phase transitions
- 4.4.5 Electroweak phase transition
- 4.5 Instantons, sphalerons and the early universe
- 4.5.1 Particle escape from a potential well
- 4.5.2 Decay of the metastable vacuum
- 4.5.3 The vacuum structure of gauge theories
- fermion number 4.5.4 Chiral anomaly and nonconservation of the
- 4.6 Beyond the Standard Model
- 4.6.1 Dark matter candidates
- 4.6.2 Baryogenesis
- 4.6.3 Topological defects
- 4.1 Basics
- 5 Inflation I: homogeneous limit
- 5.1 Problem of initial conditions
- 5.2 Inflation: main idea
- 5.3 How can gravity become “repulsive”?
- 5.4 How to realize the equation of statep≈−ε
- 5.4.1 Simple example:V=^12 m^2 φ
- 5.4.2 General potential: slow-roll approximation
- 5.5 Preheating and reheating
- 5.5.1 Elementary theory
- 5.5.2 Narrow resonance
- 5.5.3 Broad resonance
- 5.5.4 Implications
- 5.6 “Menu” of scenarios
- Part II Inhomogeneous universe
- 6 Gravitational instability in Newtonian theory
- 6.1 Basic equations
- 6.2 Jeans theory
- 6.2.1 Adiabatic perturbations
- 6.2.2 Vector perturbations
- 6.2.3 Entropy perturbations
- 6.3 Instability in an expanding universe
- 6.3.1 Adiabatic perturbations
- 6.3.2 Vector perturbations
- 6.3.3 Self-similar solution viii Contents
- 6.3.4 Cold matter in the presence of radiation or dark energy
- 6.4 Beyond linear approximation
- 6.4.1 Tolman solution
- 6.4.2 Zel’dovich solution
- 6.4.3 Cosmic web
- 7 Gravitational instability in General Relativity
- 7.1 Perturbations and gauge-invariant variables
- 7.1.1 Classification of perturbations
- 7.1.2 Gauge transformations and gauge-invariant variables
- 7.1.3 Coordinate systems
- 7.2 Equations for cosmological perturbations
- 7.3 Hydrodynamical perturbations
- 7.3.1 Scalar perturbations
- 7.3.2 Vector and tensor perturbations
- 7.4 Baryon–radiation plasma and cold dark matter
- 7.4.1 Equations
- 7.4.2 Evolution of perturbations and transfer functions
- 7.1 Perturbations and gauge-invariant variables
- 8 Inflation II: origin of the primordial inhomogeneities
- 8.1 Characterizing perturbations
- 8.2 Perturbations on inflation (slow-roll approximation)
- 8.2.1 Inside the Hubble scale
- 8.2.2 The spectrum of generated perturbations
- 8.2.3 Why do we need inflation?
- 8.3 Quantum cosmological perturbations
- 8.3.1 Equations
- 8.3.2 Classical solutions
- 8.3.3 Quantizing perturbations
- 8.4 Gravitational waves from inflation
- 8.5 Self-reproduction of the universe
- 8.6 Inflation as a theory with predictive power
- 9 Cosmic microwave background anisotropies
- 9.1 Basics
- 9.2 Sachs–Wolfe effect
- 9.3 Initial conditions
- 9.4 Correlation function and multipoles
- 9.5 Anisotropies on large angular scales
- 9.6 Delayed recombination and the finite thickness effect
- 9.7 Anisotropies on small angular scales
- 9.7.1 Transfer functions
- 9.7.2 Multipole moments Contents ix
- 9.7.3 Parameters
- 9.7.4 Calculating the spectrum
- 9.8 Determining cosmic parameters
- 9.9 Gravitational waves
- 9.10 Polarization of the cosmic microwave background
- 9.10.1 Polarization tensor
- 9.10.2 Thomson scattering and polarization
- 9.10.3 Delayed recombination and polarization
- 9.10.4 EandBpolarization modes and correlation functions
- 9.11 Reionization
- Bibliography
- Expanding universe (Chapters 1 and 2)
- Hot universe and nucleosynthesis (Chapter 3)
- Particle physics and early universe (Chapter 4)
- Inflation (Chapters 5 and 8)
- Gravitational instability (Chapters 6 and 7)
- CMB fluctuations (Chapter 9)
- Index
wallpaper
(WallPaper)
#1