84 The hot universe
of Integrals, Series, and Products(San Diego: Academic Press, 1994). The result
for purely imaginaryβcan be analytically continued to the realβand we obtain
J∓(−^1 )=
{
π
(
α^2 −β^2
)− 1 / 2
+(ln(α/ 4 π)+C)+O
(
α^2 ,β^2
)
,
−(ln(α/π)+C)+O
(
α^2 ,β^2
)
,
(3.40)
for bosons and fermions respectively. HereC≈ 0 .577 is Euler’s constant and
O
(
α^2 ,β^2
)
denotes terms which are quadratic and higher order inαandβ.
Problem 3.9Verify that the next subleading correction to (3.40) is
∓
7 ζ( 3 )
8 π^2
(α^2 + 2 β^2 ),
whereζis the Riemann zeta function.
To determineJ∓(^1 )andJ±(^3 )from (3.39) and (3.40), we need the “initial conditions”
J∓(ν)(α= 0 ,β).Settingα=0 and changing the integration variables, we can rewrite
the expression in (3.34) as
J∓(ν)(0,β)=
∫∞
0
(y+β)ν+(y−β)ν
ey∓ 1
dy+
∫^0
−β
(y+β)ν
ey∓ 1
dy−
∫β
0
(y−β)ν
ey∓ 1
dy.
(3.41)
Replacingyby−yin the last integral and noting that
1
ey∓ 1
+
1
e−y∓ 1
=∓ 1 ,
we obtain for oddν
J∓(ν)(0,β)=
∫∞
0
(y+β)ν+(y−β)ν
ey∓ 1
dy∓
βν+^1
ν+ 1
. (3.42)
It follows that
J∓(^1 )(0,β)=
{ 1
3 π
(^2) −^1
2 β
(^2) ,
1
6 π
(^2) + 1
2 β
(^2). (3.43)
Substituting (3.40) into (3.39) and taking into account (3.43), one finds
J∓(^1 )=
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩
1
3
π^2 −
1
2
β^2 −π
√
α^2 −β^2 −
1
2
α^2
(
ln
(α
4 π
)
+C−
1
2
)
+α^2 O,
1
6
π^2 +
1
2
β^2 +
1
2
α^2
(
ln
(α
π
)
+C−
1
2
)
+α^2 O,
(3.44)