538 Chapter 9. Essential Statistics for Data Analysis
x
0 1020304050f
00.020.040.060.080.10.120.140.160.18 μ=5.5μ=10
μ=15μ=30μ=20Figure 9.3.3: Poisson probabil-
ity density for different values of
μ. The width of the distribu-
tion, a reflection of the uncer-
tainty in the measurement, in-
creases with increase inμ.The log likelihood function ofL(μ)is
l≡ln(L)=(n
∑i=1xi)
ln(μ)−nμ−ln(x 1 !x 2 !...xn!). (9.3.33)Following the maximum likelihood method (∂l/∂μ=0)weget
∂
∂μ[(n
∑i=1xi)
ln(μ)−nμ−ln(x 1 !x 2 !...xn!)]
=0
1
μ∗∑ni=1xi−n =0μ∗ =1
n∑ni=1xi. (9.3.34)This shows that the simple mean is the most probable value of a Poisson distributed
variable. To determine the error inμ, we fist take second derivative of the log
likelihood function and then substitute it in equation 9.3.22.
∂^2 l
∂μ^2= −
1
μ^2∑ni=1xiμ =[
−
∂^2 l
∂μ^2]− 1 / 2
=
[
μ∗^2
∑n
i=1xi] 1 / 2
=
1
n[n
∑i=1xi] 1 / 2
(9.3.35)
This is one of the most useful results of the Poisson distribution. It implies that if
we make one measurement, the statistical error we should expect in it would simply