540 Chapter 9. Essential Statistics for Data Analysis
x
0 5 10 15 20 25 30 35 40 45f
00.010.020.030.040.050.060.070.08x
-4 -2 0 2 4f
00.050.10.150.20.250.30.350.4Figure 9.3.4: (a) Gaussian dis-
tribution forμ =25andσ =- (b) Standard normal distri-
bution havingμ =0andσ = - With proper change of scale,
any Gaussian distribution can be
transformed into a standard nor-
mal distribution.
Taking the natural logarithm of both sides of this equation gives
ln(L)=∑N
i=1[
−
(xi−μ)^2
2 σ^2 i−ln(σi)−ln(2π)
2]
. (9.3.40)
The maximum likelihood solution is then obtained by differentiating this equation
with respect toμand equating the result to zero. Hence we get
∂ln(L)
∂μ∗=
∑N
i=1xi−μ∗
σ^2 i= 0 (9.3.41)
⇒
∑N
i=1μ∗
σi^2=
∑N
i=1xi
σi^2⇒μ∗ =∑N
∑i=1wixi
N
i=1wi, (9.3.42)
wherewi=1/σi^2. Hence the most probable value is simply the weighted mean with
respective inverse variances orerrorsas weights. If we assume that each measure-
ment has the same amount of uncertainty or error then usingσi=σthe maximum