Analysis of Algorithms : An Active Learning Approach

(Ron) #1
INDEX 293

Pivot element
and quicksort, 89
PivotList function, 90, 91, 92
relationship between indices and element
values in, 90
splitting the list, 90-91
PivotPoint, 9 2
PivotValue, 9 1
Pixels, 106, 107
Polynomial calculations, 107-111
Horner’s method, 108
preprocessed coefficients, 108-111
Polynomial equations, 106, 107, 214
Polynomial of degree 7
work done for, 111
Polynomial of degree N, work done for, 111
Polynomials, 106
Polynomial time, 218, 224, 228
algorithms, 217, 232
complexity, 215
problems, 220
PolyphaseMerge, 9 8
position variable, 257
Power series expansions, 106
PRAM. See Parallel random access machine
PRAM model, 183-185
Preprocessed coefficients, 108-111, 270, 271
Preprocessing steps, 188, 189
Prim, R. C., 155
Prime numbers, 180n1
and Monte Carlo algorithm, 246
Probabilistic algorithms, 232
comparisons of, 250
Las Vegas, 232, 246-249
Monte Carlo, 232, 244-246


Sherwood, 232, 249-250
Probabilistic counting, 243-244
Probabilities, 15-16
Problem reductions, 217-218
Problems
backpack, 222
bin packing, 221-222
CNF-satisfiability, 222-223
graph coloring, 220-221, 228
job scheduling, 223, 227
NP, 220-223
NP-complete, 218-220
reducing, 217-218
subset sum, 222
Procedures, 38
Processor communication, 181-182
Programming
dynamic, 138, 252-257
Program profiling tools, 39
Programs analysis, 38-39
Pseudocode, 7
Pseudorandom number generation, 261-264
example application, 262-264
generating numbers in different range,
262
Pushing/popping graph vertices, 151

Q
Queue
BreadthFirstTraversal, 152
Quicksort, 58, 59, 89-93, 91, 92, 96, 197
average-case analysis of, 91-93
chapter study suggestion results, 269
pivot element for, 249
Free download pdf