Science - USA (2021-12-10)

(Antfer) #1

performance of Te switches matches well with
those of GST-based PCM cells, which do not
deteriorate severely after series connection with
PCM cells (fig. S15). The intrinsically homoge-
neous composition and BEOL compatibility of
the Te switch not only cut the time-consuming
material-optimization process but also enable
aggressive size downscaling toward sub-10-nm
dimensions for realizing 3D memory chips with
the highest density.


REFERENCES AND NOTES



  1. P. Zaldenet al.,Science 364 , 1062–1067 (2019).

  2. D. Ielmini, H.-S. P. Wong,Nat. Electron. 1 , 333– 343
    (2018).

  3. F. Raoet al.,Science 358 , 1423–1427 (2017).

  4. M. Wuttig, N. Yamada,Nat. Mater. 6 , 824–832 (2007).

  5. B. Tallis, "Intel launches Optane Memory M.2 Cache SSDs for
    consumer market" (2017); http://www.anandtech.com/show/11227/
    intel-launches-optane-memory-m2-cache-ssds-for-client-
    market.

  6. F. Xiong, A. D. Liao, D. Estrada, E. Pop,Science 332 , 568– 570
    (2011).

  7. S.-H. Lee, Y. Jung, R. Agarwal,Nat. Nanotechnol. 2 , 626– 630
    (2007).

  8. D. Kauet al., in2009 IEEE International Electron Devices
    Meeting (IEDM)(2009), pp. 617–620.

  9. W. Zhang, R. Mazzarello, M. Wuttig, E. Ma,Nat. Rev. Mater. 4 ,
    150 – 168 (2019).

  10. M. Salingaet al.,Nat. Mater. 17 , 681–685 (2018).

  11. S. Jiaet al.,Nat. Commun. 11 , 4636 (2020).

  12. M. Gill, T. Lowrey, J. Park, in2002 IEEE International Solid-
    State Circuits Conference. Digest of Technical Papers (Cat.
    No.02CH37315)(2002), pp. 202–203.

  13. G. Servalli, in2009 IEEE International Electron Devices Meeting
    (IEDM)(2009), pp. 1–4.

  14. A. Veleaet al.,Sci. Rep. 7 , 8103 (2017).
    15. J. Yooet al.,2018 IEEE Symp. VLSI Technol. 20 , 207– 208
    (2018).
    16. M. Zhu, K. Ren, Z. Song,MRS Bull. 44 , 715–720 (2019).
    17. D. Garbinet al., in2019 IEEE International Electron Devices
    Meeting (IEDM)(2019), pp. 823–826.
    18. M. J. Leeet al.,Nat. Commun. 4 , 2629 (2013).
    19. P. Noéet al.,Sci. Adv. 6 , eaay2830 (2020).
    20. W. Wanget al.,Sci. Rep. 2 , 360 (2012).
    21. D. Lokeet al.,Science 336 , 1566–1569 (2012).
    22. M. Anbarasu, M. Wimmer, G. Bruns, M. Salinga, M. Wuttig,
    Appl. Phys. Lett. 100 , 143505 (2012).
    23. Y. Koo, S. Lee, S. Park, M. Yang, H. Hwang,IEEE Electron
    Device Lett. 38 , 568–571 (2017).
    24. Materials and methods are available as supplementary
    materials.
    25. H. Y. Chenget al., "Ultra-high endurance and low IOFF selector
    based on AsSeGe chalcogenides for wide memory window 3D
    stackable crosspoint memory" in2019 IEEE International
    Electron Devices Meeting (IEDM)(2019), pp. 37.3.1–37.3.4.
    26. G. W. Burret al.,J. Vac. Sci. Technol. B Nanotechnol.
    Microelectron. 28 , 223–262 (2010).
    27. M. A. Zidan, J. P. Strachan, W. D. Lu,Nat. Electron. 1 , 22– 29
    (2018).
    28. M. Salingaet al.,Nat. Commun. 4 , 2371 (2013).
    29. B. Govoreanuet al.,2017 IEEE Symp. VLSI Technol.T92–T93
    (2017).
    30. H. Keller, J. Stuke,Phys. Status Solidi B Basic Res. 8 , 831– 840
    (1965).
    31. B. Kramer, K. Maschke, L. D. Laude,Phys. Rev. B 8 , 5781– 5793
    (1973).
    32. D. Ielmini, Y. Zhang,J. Appl. Phys. 102 , 054517 (2007).
    33. P. R. Emtage, W. Tantraporn,Phys. Rev. Lett. 8 , 267– 268
    (1962).
    34. X. Huanget al.,Nano Lett. 17 , 4619–4623 (2017).
    35. M. Jałochowski, P. Mikołajczak, M. Subotowicz,Phys. Status
    Solidi A Appl. Res. 14 , K135–K137 (1972).
    36. G. M. Matenoglou, L. E. Koutsokeras, P. Patsalas,Appl. Phys.
    Lett. 94 , 152108 (2009).
    37. F. A. Blum Jr., B. C. Deaton,Phys. Rev. 137 , A1410–A1417
    (1965).
    38. Y. Wanget al.,Nat. Electron. 1 , 228–236 (2018).
    39. Y. Duet al.,Nano Lett. 17 , 3965–3973 (2017).
    40. Z. Zhang, Y. Guo, J. Robertson,J. Appl. Phys. 127 , 155301
    (2020).
    41. A. Kramer, M. L. Van de Put, C. L. Hinkle, W. G. Vandenberghe,
    npj 2D Mater. Appl. 4 , 10 (2020).
    42. S. W. Namet al.,Science 336 , 1561–1566 (2012).
    43. A. S. Epstein, H. Fritzsche, K. Lark-Horovitz,Phys. Rev. 107 ,
    412 – 419 (1957).


ACKNOWLEDGMENTS
Funding:Financial support was provided by the National Key
Research and Development Program of China (2017YFB0206101)
and the Strategic Priority Research Program of the Chinese
Academy of Sciences (XDB44010000). M.Z. acknowledges support
by the Hundred Talents Program (Chinese Academy of Sciences)
and Shanghai Rising-Star Program (21QA1410800).Author
contributions:Conceptualization: M.Z. Methodology: M.Z., J.S.,
and S.J. Investigation: J.S., S.J., N.S., Q.G., T.G., and S.L.
Visualization: J.S. and M.Z. Funding acquisition: M.Z., Q.L., and Z.S.
Project administration: M.Z., Q.L., and Z.S. Supervision: M.Z.
Writing–original draft: M.Z. Writing–review & editing: M.Z.,
S.R.E., and R.D.Competing interests:The idea of a Te-based
switch is protected by a Chinese patent (CN202010975902.2) and
an international patent (PCT/CN2020/124585).Data and
materials availability:All data needed to evaluate the conclusions
in this paper are present in the paper or the supplementary
materials.

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abi6332
Materials and Methods
Figs. S1 to S15
Tables S1 to S3
References ( 44 – 54 )
Movies S1 and S2
20 April 2021; resubmitted 12 August 2021
Accepted 12 October 2021
10.1126/science.abi6332

1394 10 DECEMBER 2021¥VOL 374 ISSUE 6573 science.orgSCIENCE


Fig. 4. Switching mechanism of the Te device obtained through in situ
TEM observations.(A) TEM image of a TiN/Te/TiN nanodevice, resembling the
T-shaped device. Enlarged view and corresponding mappings show that the
nanodevice is a stack of Cu, TiN, Te, TiN, and W layers. (B) DCI-Vcurve of
the Te nanodevice during switching. Critical time steps are also indicated by red
arrows. A tungsten tip (cathode) is touching the nanodevice (anode), as shown
in the inset, and applies the voltage. (CandD) Microstructure of the Te film in the
nanodevice before switching. The Te film has a trigonal structure, identified by the


FFT image (D). (EandF) Microstructure of the Te film after switching.
Spontaneous recrystallization occurs after voltage removal. The recrystallized
Te regrows into the same trigonal structure, yet with a different orientation (F).
(GtoJ) Snapshots of TEM images (from movie S1) during switching. The initial Te
device is in the OFF state with negligible passing current. As time proceeds, the
corresponding currents are found [marked earlier (by red arrows) in (B)]. The Te
film melts as the voltage exceeds 2.5 V [(H) to (J)], and the flow of the liquid
causes a void in this unconfined nanodevice [red arrow in (E)].

RESEARCH | REPORTS

Free download pdf