Advanced Solid State Physics

(Axel Boer) #1

  • 1 What is Solid State Physics

  • 2 Schrödinger Equation

  • 3 Quantization

    • 3.1 Quantization

      • 3.1.1 Quantization of the Harmonic Oscillator

      • 3.1.2 Quantization of the Magnetic Flux

      • 3.1.3 Quantisation of a charged particle in a magnetic field (with spin)

      • 3.1.4 Dissipation





  • 4 Quantization of the Electromagnetic Field - Quantization Recipe

    • 4.1 Thermodynamic Quantities

      • 4.1.1 Recipe for the Quantization of Fields





  • 5 Photonic Crystals

    • 5.1 Intruduction: Plane Waves in Crystals

    • 5.2 Empty Lattice Approximation (Photons)

    • 5.3 Central Equations

    • 5.4 Estimate the Size of the Photonic Bandgap

    • 5.5 Density of States

    • 5.6 Photon Density of States



  • 6 Phonons

    • 6.1 Linear Chain

    • 6.2 Simple Cubic

      • 6.2.1 Raman Spectroscopy





  • 7 Electrons

    • 7.1 Free Electron Fermi Gas

      • 7.1.1 Fermi Energy

      • 7.1.2 Chemical Potential

      • 7.1.3 Sommerfeld Expansion

      • 7.1.4 ARPES



    • 7.2 Electronic Band Structure Calculations

      • 7.2.1 Empty Lattice Approximation

      • 7.2.2 Plane Wave Method - Central Equations

      • 7.2.3 Tight Binding Model

      • 7.2.4 Graphene

      • 7.2.5 Carbon nanotubes



    • 7.3 Bandstructure of Metals and Semiconductors

    • 7.4 Direct and Indirect Bandgaps



  • 8 Crystal Physics

    • 8.1 Stress and Strain

    • 8.2 Statistical Physics

    • 8.3 Crystal Symmetries

    • 8.4 Example - Birefringence



  • 9 Magnetism and Response to Electric and Magnetic Fields

    • 9.1 Introduction: Electric and Magnetic Fields

    • 9.2 Magnetic Fields

    • 9.3 Magnetic Response of Atoms and Molecules

      • 9.3.1 Diamagnetic Response

      • 9.3.2 Paramagnetic Response



    • 9.4 Free Particles in a Weak Magnetic Field

    • 9.5 Ferromagnetism



  • 10 Transport Regimes

    • 10.1 Linear Response Theory

    • 10.2 Ballistic Transport

    • 10.3 Drift-Diffusion

    • 10.4 Diffusive and Ballistic Transport

    • 10.5 Skin depth



  • 11 Quasiparticles

    • 11.1 Fermi Liquid Theory

    • 11.2 Particle like Quasiparticles

      • 11.2.1 Electrons and Holes

      • 11.2.2 Bogoliubov Quasiparticles

      • 11.2.3 Polarons

      • 11.2.4 Bipolarons

      • 11.2.5 Mott Wannier Excitons



    • 11.3 Collective modes

      • 11.3.1 Phonons

      • 11.3.2 Polaritons

      • 11.3.3 Magnons

      • 11.3.4 Plasmons

      • 11.3.5 Surface Plasmons

      • 11.3.6 Frenkel Excitations



    • 11.4 Translational Symmetry

    • 11.5 Occupation

    • 11.6 Experimental techniques

      • 11.6.1 Raman Spectroscopy

      • 11.6.2 EELS

      • 11.6.3 Inelastic Scattering

      • 11.6.4 Photoemission





  • 12 Electron-electron interactions, Quantum electronics

    • 12.1 Electron Screening

    • 12.2 Single electron effects

      • 12.2.1 Tunnel Junctions

      • 12.2.2 Single Electron Transistor



    • 12.3 Electronic phase transitions

      • 12.3.1 Mott Transition

      • 12.3.2 Peierls Transition





  • 13 Optical Processes

    • 13.1 Optical Properties of Materials

      • 13.1.1 Dielectric Response of Insulators

      • 13.1.2 Inter- and Intraband Transition



    • 13.2 Collisionless Metal

    • 13.3 Diffusive Metals

      • 13.3.1 Dielectric Function





  • 14 Dielectrics and Ferroelectrics

    • 14.1 Excitons

      • 14.1.1 Introduction

      • 14.1.2 Mott Wannier Excitons

      • 14.1.3 Frenkel excitons



    • 14.2 Optical measurements

      • 14.2.1 Introduction

      • 14.2.2 Ellipsometry

      • 14.2.3 Reflection electron energy loss spectroscopy

      • 14.2.4 Photo emission spectroscopy

      • 14.2.5 Raman spectroscopy



    • 14.3 Dielectrics

      • 14.3.1 Introduction

      • 14.3.2 Polarizability



    • 14.4 Structural phase transitions

      • 14.4.1 Introduction

      • 14.4.2 Example: Tin

      • 14.4.3 Example: Iron

      • 14.4.4 Ferroelectricity

      • 14.4.5 Pyroelectricity

      • 14.4.6 Antiferroelectricity

      • 14.4.7 Piezoelectricity

      • 14.4.8 Polarization



    • 14.5 Landau Theory of Phase Transitions

      • 14.5.1 Second Order Phase Transitions

      • 14.5.2 First Order Phase Transitions





  • 15 Summary: Silicon

  • 16 Superconductivity

    • 16.1 Introduction



  • 16.2 Experimental Observations

    • 16.2.1 Fundamentals

    • 16.2.2 Meissner - OchsenfeldEffect

    • 16.2.3 Heat Capacity

    • 16.2.4 Isotope Effect



  • 16.3 Phenomenological Description

    • 16.3.1 Thermodynamic Considerations

    • 16.3.2 TheLondonEquations

    • 16.3.3 Ginzburg - LandauEquations



  • 16.4 Microscopic Theories

    • 16.4.1 BCS Theory of Superconductivity

    • 16.4.2 Some BCS Results

    • 16.4.3 CooperPairs

    • 16.4.4 Flux Quantization

    • 16.4.5 Single Particle Tunneling

    • 16.4.6 TheJosephsonEffect

    • 16.4.7 SQUID



Free download pdf