Figure 58: Particle moving on a circle in cartesian coordinates and in k-space. Something moving
on a circle at a located position, moves around the origin in k-space, because the x- and
y-velocity keep going to zero and that’s the path taken in k-space.
So, one has to construct a Lagrangian, which is a function of velocity. Normally one guesses the
Lagrangian and looks if the right force comes out, but luckily in this case the Lagrangian was guessed
before to be
L=
1
2
mv^2 −qV(r,t) +qv·A(r,t). (67)
So by putting this Lagrangian into the Euler-Lagrange equations (eqn. (68)), we obtain the Lorentz
force law^6 :
d
dt
(∂L
∂x ̇i
)
−
∂L
∂xi
= 0 (68)
d
dt
(
∂L
∂vx
)
−
∂L
∂x
= 0
d
dt
(
∂L
∂vx
)
=
d
dt
(mvx+qAx) =m
dvx
dt
+q
dAx
dt
=m
dvx
dt
+q
(
dx
dt
∂Ax
∂x
+
dy
dt
∂Ax
∂y
+
dz
dt
∂Ax
∂z
+
∂Ax
∂t
)
=m
dvx
dt
+q
(
vx
∂Ax
∂x
+vy
∂Ax
∂y
+vz
∂Ax
∂z
+
∂Ax
∂t
)
∂L
∂x
=−q
∂V
∂x
+q
(
vx
∂Ax
∂x
+vy
∂Ay
∂x
+vz
∂Az
∂x
)
m
dvx
dt
=−q
(
∂V
∂x
+
∂Ax
∂t
)
︸ ︷︷ ︸
x component of electric field
+q
(
vy
(
∂Ay
∂x
−
∂Ax
∂y
)
+vz
(
∂Az
∂x
−
∂Ax
∂z
))
︸ ︷︷ ︸
x component ofvxB
With the calculation above in all three dimensions,E=−∇V −∂dtA andB=∇×A, eqn. (66) is
obtained, which proves eqn. (67) to be the right Lagrangian to solve this problem.
(^6) Der Beweis fuer die Richtigkeit der Lagrangefunktion ist nicht pruefungsrelevant, wird aber der Vollstaendigkeit halber
wiedergegeben. Man sollte aber wissen, dass genau diese Lagrangefunktion das Problem beschreibt.