Example 7-18. Show that ∇× (∇× A) = ∇(∇·A)−∇^2 A
Solution Calculate ∇× A using determinants to obtain
∇× A=∣∣
∣∣
∣∣ˆe 1 ˆe 2 ˆe 3
∂
∂x∂
∂y∂
∂z
A 1 A 2 A 3∣∣
∣∣
∣∣=(
∂A 3
∂y −∂A 2
∂z)
ˆe 1 −(
∂A 3
∂x −∂A 1
∂z)
ˆe 2 +(
∂A 2
∂x −∂A 1
∂y)
eˆ 3One can then calculate the curl of the curl as
∇× (∇× A) =∣∣
∣∣
∣∣
∣ˆe 1 eˆ 2 eˆ 3
∂
∂x∂
∂y∂
( ∂z
∂A 3
∂y −∂A 2
∂z) (
∂A 1
∂z −∂A 3
∂x) (∂A 2
∂x −∂A 1
∂y)∣∣
∣∣
∣∣
∣(7 .66)The eˆ 1 component of ∇× (∇× A)is
ˆe 1[
∂
∂y(
∂A 2
∂x −∂A 1
∂y)
−∂
∂z(
∂A 1
∂z −∂A 3
∂x)]
=ˆe 1[
∂^2 A 2
∂x ∂y −∂^2 A 1
∂y^2 −∂^2 A 1
∂z^2 +∂^2 A 3
∂x ∂z]By adding and subtracting the term
∂^2 A 1
∂x^2to the above result one finds the ˆe 1
component can be expressed in the form
ˆe 1{[
−∂(^2) A 1
∂x^2
−∂
(^2) A 1
∂y^2
−∂
(^2) A 1
∂z^2
]
- ∂
∂x
(
∂A 1
∂x
+∂A^2
∂y
+∂A^3
∂z
)}
(7 .67)
In a similar fashion it can be verified that the ˆe 2 component of ∇× (∇× A)is
ˆe 2{[
−∂(^2) A 2
∂x^2 −
∂^2 A 2
∂y^2 −
∂^2 A 2
∂z^2
]
+∂y∂
(
∂A 1
∂x +
∂A 2
∂y +
∂A 3
∂z
)}
(7 .68)
and the ˆe 3 component of ∇× (∇× A)is
ˆe 3{[
−∂^2 A 3
∂x^2 −∂^2 A 3
∂y^2 −∂^2 A 3
∂z^2]
+∂
∂z(
∂A 1
∂x +∂A 2
∂y +∂A 3
∂z)}
(7 .69)Adding the results from the equations (7.67), (7.68), (7.69) one obtains the result
∇× (∇× A) = ∇(∇·A)−∇^2 A (7 .70)