The element of volume in spherical coordinates is given by dV =ρ^2 sin θdθdφdρand the element of surface area is dS =ρ^2 sin θdθdφ , with ρconstant. The direction
ˆeρis called the radial direction, the vector ˆeθ is called the polar direction^11 and the
direction eˆφis called the azimuthal direction.
Example7-36. For F = (x−z)ˆe 1 + (y−x)ˆe 2 + (z+x+y)ˆe 3 , let Sdenote the
surface enclosing the volume V bounded by the hemisphere x^2 +y^2 +z^2 = 1 , z ≥ 0 ,
and the plane z= 0. Calculate (i) I 1 =
∫∫∫V∇·F dV (ii) I 2 =
∫∫SF·ˆendSSolution Show ∇·F = div F = 3 and use spherical coordinates with dV =ρ^2 sin θ dρ dφ dθ,
and show
I 1 =∫π/ 2θ=0∫ 2 πφ=0∫ 1ρ=03 ρ^2 sin θ dρ dφ dθ = 2πBreak the surface integral I 2 into an integration Iupper over the hemisphere and
an integral Ilower surface integral over the plane z= 0. On Iupper use dS = sin θ dθ dφ
and ˆen=xˆe 1 +yˆe 2 +zˆe 3 with F·ˆen=x^2 +y^2 +z^2 = 1. One finds
Iupper =∫ 2 πφ=0∫π/ 2θ=0sin θ dθ dφ = 2πOn the plane z= 0, use dS =dxdy and ˆen=−ˆe 3 with F·ˆen=−(z+x+y)
z=0=−(x+y)so that
Ilower =∫ 1x=− 1∫√ 1 −x 2y=−√ 1 −x^2−(x+y)dydx = 0and consequently I 2 =Iupper +Ilower = 2π.
Example7-37. Let Sdenote the surface of the hemisphere x^2 +y^2 +z^2 = 1, z ≥ 0
and let Cdenote the curve x^2 +y^2 = 1 lying on the surface S. Calculate the integrals
(i) I 3 =∫∫ScurlF·eˆndS (ii) I 4 =∫CF·drwhere F=yeˆ 1 + (z^2 + 2x)ˆe 2 + 2yz ˆe 3
Solution One finds curlF =ˆe 3 and on the hemisphere eˆn=xˆe 1 +yˆe 2 +zˆe 3 , so that
curlF·ˆen=z. Let dS = dxdy
|ˆe 3 ·eˆn|=dxdy
zand show
I 3 =∫ 1x=− 1∫√ 1 −x 2y=−√ 1 −x^2dydx = 2∫ 1− 1√
1 −x^2 dx =π(^11) The angle θis called the polar angle or zenith angle and the angle φis called the azimuthal angle.