On S 1 , z = 4, eˆn=ˆe 3 , dS =dx dy and
∫∫S 1F·dS=∫ 20∫√ 4 −x 2016 dy dx = 16∫ 20√
4 −x^2 dx = 16 π.On S 2 , y = 0, ˆen=−ˆe 2 , dS =dx dz and
∫∫S 2F·dS=∫∫
− 3 y dx dz = 0.On S 3 , x = 0, ˆen=−ˆe 1 , dS =dy dz and
∫∫S 3F·dS=∫∫
− 2 x dy dz = 0.On S 4 the surface is defined by φ=x^2 +y^2 −z= 0,and the normal is determined
from
eˆn= grad φ
|grad φ|=(^2) √xˆe 1 + 2yˆe 2 −ˆe 3
4(x^2 +y^2 ) + 1
2 xˆe (^1) √+ 2 yeˆ 2 −ˆe 3
4 z+ 1
,
and consequently the element of surface area can be represented by
dS =dx dy
|ˆen·ˆe 3 |=√
4 z+ 1 dx dy.One can then write
∫∫S 4F·dS=∫∫S 4F·ˆendS =∫∫S 4(4 x^2 − 6 y^2 − 4 z)dx dy=∫∫S 4(4 x^2 − 6 y^2 −4(x^2 +y^2 )) dx dy=∫ 20∫√ 4 −x 20− 10 y^2 dy dx =−∫ 2010
3 y3√ 4 −x 20dx=−∫ 2010
3√
(4 −x^2 )^3 dx =− 10 π.