(c)
∇^2 A=
∂^2
∂x^2 (x
(^2) ˆe 1 +xy ˆe 2 +y (^2) ˆe 3 ) + ∂^2
∂y^2 (x
(^2) eˆ 1 +xy ˆe 2 +y (^2) ˆe 3 ) + ∂^2
∂z^2 (x
(^2) ˆe 1 +xy ˆe 2 +y (^2) ˆe 3 )
= 2 ˆe 1 + 2 ˆe 3
(d)
(A×∇ )φ= (xy ∂φ
∂z
−y^2 ∂φ
∂y
)ˆe 1 + (y^2 ∂φ
∂x
−x^2 ∂φ
∂z
)ˆe 2 + (x^2 ∂φ
∂y
−xy ∂φ
∂x
)ˆe 3 ,
where ∂φ
∂x
= 2xy^2 +yz^2 , ∂φ
∂y
= 2yx^2 +xz^2 , ∂φ
∂z
= 2xyz
and (A×∇ )φ= (2 x^2 y^2 z− 2 x^2 y^3 −xy^2 z^2 )ˆe 1
+ (2xy^4 +y^3 z^2 − 2 x^3 yz)ˆe 2
+ (2x^4 y+x^3 z^2 − 2 x^2 y^3 −xy^2 z^2 )ˆe 3
Relations Involving the Del Operator
In summary, the following table illustrates a variety of relations involving the
del operator. In these tables the functions f, g are assumed to be differentiable scalar
functions of position and A, B are vector functions of position, which are continuous
and differentiable.
The ∇operator and differentiation
1. ∇(f+g) = ∇f+∇g or grad (f+g) = grad f+ grad g
2. ∇·(A+B) = ∇·A+∇·B or div (A+B) = div A+ div B
3. ∇× (A+B) = ∇× A+∇× B or curl (A+B) = curlA+ curlB
4. ∇(fA) = (∇f)·A+f(∇·A)
5. ∇× (fA) = (∇f)×A+f(∇× A)
6. ∇· (A×B) = B(∇× A)−A(∇× B)
7. (A×∇ )f=A×∇ f
8. For f=f(u)and u=u(x, y, z ), then ∇f=dudf ∇u
9. For f=f(u 1 , u 2 ,... , u n)and ui=ui(x, y, z )for i= 1, 2 ,.. ., n, then
∇f= ∂f
∂u 1
∇u 1 + ∂f
∂u 2
∇u 2 +···+ ∂f
∂u n
∇un
10. ∇× (A×B) = ∇(∇·A)−B(∇·A)
11. ∇(A·B) = A×(∇× B) + B×(∇× A) + (B∇)A+ (A∇)B
12. ∇× (∇× A) = ∇(∇·A)−∇^2 A
13. ∇·(∇f) = ∇^2 f=
∂^2 f
∂x^2 +
∂^2 f
∂y^2 +
∂^2 f
∂z^2