Begin2.DVI

(Ben Green) #1
(c)

∇^2 A=

∂^2
∂x^2 (x

(^2) ˆe 1 +xy ˆe 2 +y (^2) ˆe 3 ) + ∂^2
∂y^2 (x
(^2) eˆ 1 +xy ˆe 2 +y (^2) ˆe 3 ) + ∂^2
∂z^2 (x
(^2) ˆe 1 +xy ˆe 2 +y (^2) ˆe 3 )
= 2 ˆe 1 + 2 ˆe 3
(d)
(A×∇ )φ= (xy ∂φ
∂z
−y^2 ∂φ
∂y
)ˆe 1 + (y^2 ∂φ
∂x
−x^2 ∂φ
∂z
)ˆe 2 + (x^2 ∂φ
∂y
−xy ∂φ
∂x
)ˆe 3 ,


where ∂φ

∂x

= 2xy^2 +yz^2 , ∂φ
∂y

= 2yx^2 +xz^2 , ∂φ
∂z

= 2xyz

and (A×∇ )φ= (2 x^2 y^2 z− 2 x^2 y^3 −xy^2 z^2 )ˆe 1

+ (2xy^4 +y^3 z^2 − 2 x^3 yz)ˆe 2
+ (2x^4 y+x^3 z^2 − 2 x^2 y^3 −xy^2 z^2 )ˆe 3

Relations Involving the Del Operator


In summary, the following table illustrates a variety of relations involving the

del operator. In these tables the functions f, g are assumed to be differentiable scalar

functions of position and A, B are vector functions of position, which are continuous

and differentiable.

The ∇operator and differentiation

1. ∇(f+g) = ∇f+∇g or grad (f+g) = grad f+ grad g

2. ∇·(A+B) = ∇·A+∇·B or div (A+B) = div A+ div B

3. ∇× (A+B) = ∇× A+∇× B or curl (A+B) = curlA+ curlB

4. ∇(fA) = (∇f)·A+f(∇·A)

5. ∇× (fA) = (∇f)×A+f(∇× A)

6. ∇· (A×B) = B(∇× A)−A(∇× B)

7. (A×∇ )f=A×∇ f

8. For f=f(u)and u=u(x, y, z ), then ∇f=dudf ∇u

9. For f=f(u 1 , u 2 ,... , u n)and ui=ui(x, y, z )for i= 1, 2 ,.. ., n, then

∇f= ∂f
∂u 1

∇u 1 + ∂f
∂u 2

∇u 2 +···+ ∂f
∂u n

∇un

10. ∇× (A×B) = ∇(∇·A)−B(∇·A)

11. ∇(A·B) = A×(∇× B) + B×(∇× A) + (B∇)A+ (A∇)B

12. ∇× (∇× A) = ∇(∇·A)−∇^2 A

13. ∇·(∇f) = ∇^2 f=

∂^2 f
∂x^2 +

∂^2 f
∂y^2 +

∂^2 f
∂z^2

14. ∇×∇ f) =  0 The curl of a gradient is the zero vector.

15. ∇·(∇× A) = 0 The divergence of a curl is zero.
Free download pdf