Elliptic cylindrical coordinates (ξ, η, z ) :
x= cosh ξcos η, ξ ≥ 0
y= sinh ξsin η, 0 ≤η≤ 2 π
z=z, −∞ < z < ∞
ds^2 =h^2 ξdξ^2 +h^2 ηdη^2 +h^2 zdz^2
hξ=hη=
√
sinh^2 ξ+ sin^2 η, h z= 1
gij =
h^2 ξ 0 0
0 h^2 η 0
0 0 h^2 z
(8 .81)
Elliptic coordinates (ξ, η, φ ) :
x=
√
(1 −η^2 )(ξ^2 −1) cos φ, − 1 ≤η≤ 1
y=
√
(1 −η^2 )(ξ^2 −1) sin φ, 1 ≤ξ < ∞
z=ξη, 0 ≤φ≤ 2 π
ds^2 =h^2 ξdξ^2 +h^2 ηdη^2 +h^2 φdφ^2
hξ=
√
ξ^2 −η^2
ξ^2 − 1
, h η=
√
ξ^2 −η^2
1 −η^2
, h φ=
√
(ξ^2 −1)(1 −η^2 )
gij =
h^2 ξ 0 0
0 h^2 η 0
0 0 h^2 φ
(8 .82)
Transformation of Vectors
A vector field defined by
A=A(x, y, z ) = A 1 (x, y, z )ˆe 1 +A 2 (x, y, z )ˆe 2 +A 3 (x, y, z )ˆe 3
represents a magnitude and direction associated to each point (x, y, z )in some region
Ror three dimensional cartesian coordinates. This vector field is to remain invariant
under a coordinate transformation. However, the form used to represent the vector
field will change. For example, under a transformation to cylindrical coordinates,
where
x=rcos θ y =rsin θ z =z, (8 .83)
the above vector can be represented in terms of the unit orthogonal vectors ˆer, ˆeθ,ˆez
in the form
A=A(r, θ, z) = Ar(r, θ, z )ˆer+Aθ(r, θ, z )ˆeθ+Az(r, θ, z )ˆez. (8 .84)