Since curl grad u= 0,the above simplifies to
∇× (Fuˆeu) = ∇(Fuh 1 )×
ˆeu
h 1
=
[
1
h 1
∂(Fuh 1 )
∂u
ˆeu+^1
h 2
∂(Fuh 1 )
∂v
ˆev+^1
h 3
∂(Fuh 1 )
∂w
eˆw
]
× ˆeu
h 1
=
1
h 1 h 3
∂(Fuh 1 )
∂w
ˆev−^1
h 1 h 2
∂(Fuh 1 )
∂v
ˆew
In a similar manner it may be verified that the remaining terms in equation (8.96)
can be expressed as
∇× (Fvˆev) =^1
h 1 h 2
∂(Fvh 2 )
∂u
ˆew−^1
h 2 h 3
∂(Fvh 2 )
∂w
ˆeu
and ∇× (Fwˆew) =^1
h 2 h 3
∂(Fwh 3 )
∂v
ˆeu−^1
h 1 h 3
∂(Fwh 3 )
∂u
ˆev.
Hence, the curlof a vector in generalized curvilinear coordinates can be represented
in the form
∇× F=^1
h 2 h 3
[
∂(Fwh 3 )
∂v
−∂(Fvh^2 )
∂w
]
ˆeu
+^1
h 1 h 3
[
∂(Fuh 1 )
∂w
−∂(Fwh^3 )
∂u
]
ˆev
+
1
h 1 h 2
[
∂(Fvh 2 )
∂u −
∂(Fuh 1 )
∂v
]
ˆew.
(8 .97)
Equation (8.97) can also be represented in the determinant form as
∇× F=h^1
1 h 2 h 3
∣∣
∣∣
∣∣
h 1 ˆeu h 2 ˆev h 3 ˆew
∂
∂u
∂
∂v
∂
∂w
Fuh 1 Fvh 2 Fwh 3
∣∣
∣∣
∣∣. (8 .98)
The Laplacian in Generalized Orthogonal Coordinates
Using the definition ∇^2 φ=∇∇ φand the relation for the gradient given by equa-
tion (8.89) and show that
∇∇ φ=∇
[
1
h 1
∂φ
∂u eˆu+
1
h 2
∂φ
∂v ˆev+
1
h 3
∂φ
∂w ˆew
]
. (8 .99)
The result of equation (8.95) simplifies equation (8.99) to the final form given as
∇^2 φ=
1
h 1 h 2 h 3
[
∂
∂u
(
h 2 h 3
h 1
∂φ
∂u
)
=
∂
∂v
(
h 1 h 3
h 2
∂φ
∂v
)
+
∂
∂w
(
h 1 h 2
h 3
∂φ
∂w
)]
. (8 .100)