8-42. In cylindrical coordinates (r, θ, z ),show that
curl F=∇× F =^1
r
∣∣
∣∣
∣∣
ˆer rˆeθ eˆz
∂
∂r
∂
∂θ
∂
∂z
Fr rF θ Fz
∣∣
∣∣
∣∣
8-43. In cylindrical coordinates (r, θ, z ),show that
div F=∇·F =
1
r
[
∂
∂r (rF r) +
∂
∂θ (Fθ) +
∂
∂z (rA z)
]
8-44. In cylindrical coordinates (r, θ, z ),show that
grad u=∇u=∂u
∂r
ˆer+^1
r
∂u
∂θ
ˆeθ+∂u
∂z
eˆz
8-45. In cylindrical coordinates (r, θ, z ),show that
∇^2 u=^1
r
∂
∂r
(
r∂u
∂r
)
+^1
r^2
∂^2 u
∂θ^2
+∂
(^2) u
∂z^2
8-46. In spherical coordinates (r, θ, φ ),show that
curl F =∇× F =^1
r^2 sin θ
∣∣
∣∣
∣∣
ˆer rˆeθ rsin θˆeφ
∂
∂r
∂
∂θ
∂
∂φ
Fr rF θ rsin θF φ
∣∣
∣∣
∣∣
8-47. In spherical coordinates (r, θ, φ ),show that
div F =∇·F =
1
r^2 sin θ
[
∂
∂r
(
r^2 sin θF r
)
+
∂
∂θ (rsin θF θ) +
∂
∂φ (rF φ)
]
8-48. In spherical coordinates (r, θ, φ ),show that
grad u=∂u
∂r
ˆer+^1
r
∂u
∂θ
ˆeθ+^1
rsin^2 θ
∂u
∂φ
ˆeφ
8-49. In spherical coordinates (r, θ, φ ),show that
∇^2 u=
1
r^2
∂
∂r
(
r^2
∂u
∂r
)
+
1
r^2 sin θ
∂
∂θ
(
sin θ
∂u
∂φ
)
+
1
r^2 sin^2 θ
∂^2 u
∂φ^2