Begin2.DVI

(Ben Green) #1
8-54. Let E 1 ,E 2 ,E 3 and E^1 ,E^2 ,E^3 be a system of reciprocal basis. (See previous

problem).

(a) If A=A^1 E 1 +A^2 E 2 +A^3 E 3 find the components A^1 , A^2 , A^3 of A relative to the base

vectors E 1 ,E 2 ,E 3.

(b) If A =A 1 E^1 +A 2 E^2 +A 3 E^3 find the components A 1 , A 2 , A 3 relative to the basis

E^1 ,E^2 ,E^3 .The numbers Aiare called the contravariant components of A and the

numbers Aiare called the covariant components of A.

(c) Using the notation

Ei·Ej=gij =gji, and Ei·Ej=gij =gji,

where E 1 ,E 2 ,E 3 and E^1 ,E^2 ,E^3 is a reciprocal system of basis, show that

Ai=

∑^3

k=1

gik Ak and Ai=

∑^3

k=1

gikAk,

where iis called the free index and kis a summation index. Here gij are called

the conjugate metric components of the space and satisfy

∑^3

j=1

gijgjk =δikis the

Kronecker delta.

(d) Show that



g 11 g 12 g 13
g 21 g 22 g 23
g 31 g 32 g 33





g^11 g^12 g^13
g^21 g^22 g^23
g^31 g^32 g^33


=



1 0 0
0 1 0
0 0 1


 or

∑^3

j=1

gijgjk =δik

8-55. Show that in an orthogonal curvilinear coordinate system (u, v, w ),the vec-

tors

(E 1 ,E 2 ,E 3 ) =

(
∂r
∂u ,

∂r
∂v ,

∂r
∂w

)

and (E^1 ,E^2 ,E^3 ) = (grad u, grad v, grad w)

are a reciprocal system of basis.
Free download pdf