Begin2.DVI

(Ben Green) #1

~r′=x′ˆe 1 +y′ˆe 2 +z′ˆe 3 to the point(x′, y′, z′)inside the volumeV. The vector~r−~r′


then points from the point(x′, y′, z′)to the point(x, y, z). The vector ˆe= ~r−~r



|~r−~r′| is a
unit vector in this direction as illustrated in the accompanying figure.


The magnetic fieldB~ =B~(x, y, z)at the point(x, y, z)due to a current density

J~=J~(x′, y′, z′)insideV is given by the Biot^12 -Savart^13 law


B~=B~(x, y, z) =μ^0
4 π

∫ ∫ ∫

V

∇·

[
J~(x′, y′, z′)×(~r−~r′)
|~r−~r′|^3

]
dx′dy′dz′ (9.152)

The divergence of this magnetic field is determined by calculating


∇·B~=μ 4 π^0

∫ ∫ ∫

V

∇·

[
J~×(~r−~r′)
|~r−~r′|^3

]
dV (9.153)

In order to evaluate the divergence as given by equation (9.153) one can employ the


vector identities
∇×(fA~) =(∇f)×A~+f(∇×A~)
∇·(A~×B~) =B~·(∇×A~)−A~·(∇×B~)


(9.154)

LetB~ = ~r−~r


|~r−~r′|^3

andA~=J~along with the second of the equations (9.154) to

show


∇·(J~×B~) =B~·(∇×J~)−J~·(∇×B~) =−J~·(∇×B~) (9.155)

This holds becauseJ~is a function of the primed coordinates and∇involves differ-


entiation with respect to the unprimed coordinates so that∇×J~is zero. Using the


first equation in (9.154) withf=^1
|~r−~r′|^3


one can write

∇×B~=∇×(~r−~r

′)
|~r−~r′|^3

=^1
|~r−~r′|^3

∇×(~r−~r′)−(~r−~r′)×∇

(
1
|~r−~r′|^3

)
(9.156)

One can verify that


∇×(~r−~r′) =

∣∣
∣∣
∣∣

ˆe 1 ˆe 2 ˆe 3

∂x


∂y


∂z
(x−x′) (y−y′) (z−z′)

∣∣
∣∣
∣∣=~^0

and iff=|~r−~r′|−^3 , then∇f=∂f∂xˆe 1 +∂f∂yˆe 2 +∂f∂zˆe 3 where


∂f
∂x=−^3 |~r−~r

′|− 4 ∂
∂x


(x−x′)^2 + (y−y′)^2 + (z−z′)^2 =

−3(x−x′)
|~r−~r′|^5

(^12) Jean Baptiste Biot (1774-1862) A French mathematician.
(^13) F elix Savart (1791-1841) A French physician who studied physics.

Free download pdf