~r′=x′ˆe 1 +y′ˆe 2 +z′ˆe 3 to the point(x′, y′, z′)inside the volumeV. The vector~r−~r′
then points from the point(x′, y′, z′)to the point(x, y, z). The vector ˆe= ~r−~r
′
|~r−~r′| is a
unit vector in this direction as illustrated in the accompanying figure.
The magnetic fieldB~ =B~(x, y, z)at the point(x, y, z)due to a current densityJ~=J~(x′, y′, z′)insideV is given by the Biot^12 -Savart^13 law
B~=B~(x, y, z) =μ^0
4 π∫ ∫ ∫V∇·[
J~(x′, y′, z′)×(~r−~r′)
|~r−~r′|^3]
dx′dy′dz′ (9.152)The divergence of this magnetic field is determined by calculating
∇·B~=μ 4 π^0∫ ∫ ∫V∇·[
J~×(~r−~r′)
|~r−~r′|^3]
dV (9.153)In order to evaluate the divergence as given by equation (9.153) one can employ the
vector identities
∇×(fA~) =(∇f)×A~+f(∇×A~)
∇·(A~×B~) =B~·(∇×A~)−A~·(∇×B~)
(9.154)LetB~ = ~r−~r′
|~r−~r′|^3andA~=J~along with the second of the equations (9.154) toshow
∇·(J~×B~) =B~·(∇×J~)−J~·(∇×B~) =−J~·(∇×B~) (9.155)This holds becauseJ~is a function of the primed coordinates and∇involves differ-
entiation with respect to the unprimed coordinates so that∇×J~is zero. Using the
first equation in (9.154) withf=^1
|~r−~r′|^3
one can write∇×B~=∇×(~r−~r′)
|~r−~r′|^3=^1
|~r−~r′|^3∇×(~r−~r′)−(~r−~r′)×∇(
1
|~r−~r′|^3)
(9.156)One can verify that
∇×(~r−~r′) =∣∣
∣∣
∣∣ˆe 1 ˆe 2 ˆe 3
∂
∂x∂
∂y∂
∂z
(x−x′) (y−y′) (z−z′)∣∣
∣∣
∣∣=~^0and iff=|~r−~r′|−^3 , then∇f=∂f∂xˆe 1 +∂f∂yˆe 2 +∂f∂zˆe 3 where
∂f
∂x=−^3 |~r−~r′|− 4 ∂
∂x√
(x−x′)^2 + (y−y′)^2 + (z−z′)^2 =−3(x−x′)
|~r−~r′|^5(^12) Jean Baptiste Biot (1774-1862) A French mathematician.
(^13) F elix Savart (1791-1841) A French physician who studied physics.