Begin2.DVI

(Ben Green) #1

An orthogonal matrix


If A is an n×nsquare matrix satisfying ATA=AA T =I, then Ais called an

orthogonal matrix , and A−^1 =AT.An example of an orthogonal matrix is given by

A=

(
cos θ sin θ
−sin θ cos θ

)
, A T=

(
cos θ −sin θ
sin θ cos θ

)
, AA T=I

Example 10-9. Some examples of special matrices are:


A=




a 11 0 0 0
a 21 a 22 0 0
a 31 a 32 a 33 0
a 41 a 42 a 43 a 44


 is lower triangular

B=




b 11 b 12 b 13 b 14
0 b 22 b 23 b 24
0 0 b 33 b 34
0 0 0 b 44


 is upper triangular

I=



1 0 0
0 1 0
0 0 1


 is an identity matrix which is also diagonal

T=





β γ 0 0 0
α β γ 0 0
0 α β γ 0
0 0 α β γ
0 0 0 α β




 is a tridiagonal matrix

A=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 is an orthogonal matrix satisfying AA T=I

If f=f( ̄x) = f(x 1 , x 2 ,... , x n)is a function of n-variables, then the Hessian matrix

associated with f is

H=





∂^2 f
∂x 12

∂^2 f
∂x 1 ∂x 2 ···

∂^2 f
∂x 1 ∂xn
∂^2 f
∂x 2 ∂x 1

∂^2 f
∂x 22 ···

∂^2 f
∂x 2 ∂xn

..

.

..

. ...

..

.

∂^2 f
∂xn∂x 1

∂^2 f
∂xn∂x 2 ···

∂^2 f
∂xn^2




Free download pdf