Begin2.DVI

(Ben Green) #1
∣∣
∣∣
∣∣
∣∣
∣∣

a 11 a 12 ··· a 1 n

..

.

..

.

... ..

.

qa i 1 qa i 2 ··· qa in

..

.

..

.

... ..

.

an 1 an 2 ··· ann

∣∣
∣∣
∣∣
∣∣
∣∣

=q

∣∣
∣∣
∣∣
∣∣
∣∣

a 11 a 12 ··· a 1 n

..

.

..

.

... ..

.

ai 1 ai 2 ··· ain

..

.

..

. ...

..

.

an 1 an 2 ··· ann

∣∣
∣∣
∣∣
∣∣
∣∣

.

6. The determinant of the product of two matrices is the product of the determi-

nants and |AB |=|A||B|.

7. If each element of a row (or column) is expressible as the sum of two (or more)

terms, then the determinant may also be expressed as the sum of two (or more)

determinants. For example,

∣∣
∣∣
∣∣
∣∣
∣∣

a 11 +b 11 a 12 ··· a 1 n

..

.

..

. ...

..

.

ai 1 +bi 1 ai 2 ··· ain

..

.

..

.

... ..

.

an 1 +bn 1 an 2 ··· ann

∣∣
∣∣
∣∣
∣∣
∣∣

=

∣∣
∣∣
∣∣
∣∣
∣∣

a 11 a 12 ··· a 1 n

..

.

..

. ...

..

.

ai 1 ai 2 ··· ain

..

.

..

.

... ..

.

an 1 an 2 ··· ann

∣∣
∣∣
∣∣
∣∣
∣∣

+

∣∣
∣∣
∣∣
∣∣
∣∣

b 11 a 12 ··· a 1 n

..

.

..

. ...

..

.

bi 1 ai 2 ··· ain

..

.

..

.

... ..

.

bn 1 an 2 ··· ann

∣∣
∣∣
∣∣
∣∣
∣∣

.

8. Let cij denote the cofactor of aij in the determinant of A. The value of the

determinant |A|is the sum of the products obtained by multiplying each element

of a row (or column) of Aby its corresponding cofactor and

|A|=ai 1 ci 1 +···+ain cin =

∑n

k=1

aik cik row expansion

or |A|=a 1 jc 1 j+···+anjcnj =

∑n

k=1

akjckj column expansion

If the elements of a row (or column) are multiplied by the cofactor elements

from a different row (or column), then zero is obtained. These results can be

used to write AC T=|A|I

Example 10-19.


Show the matrix A=



1 0 1
−1 1 2
3 2 − 1


has the cofactor matrix C=



−5 5 − 5
2 − 4 − 2
− 1 −3 1


.

If the elements from any row (or column) of A are multiplied by their respective

cofactors, then the sum of these products gives us the determinant |A|.For example,

using row expansions one can verify
Free download pdf