Table 12.1 Short Table of Integrals
1.
∫
zndz =zn+1
n+ 1+c, n =− 1 11.
∫
sinh z dz = cosh z+c2.
∫ dzz = log z+c 12.
∫
cosh z dz = sinh z+c3.
∫ezdz =ez+c 13.
∫
tanh z dz = log ( cosh z) + c4.
∫
kzdz =kzlog k+c, k is a constant 14.
∫
sech^2 z dz = tanh z+c5.
∫sin z dz =−cos z+c 15.
∫ dz√z (^2) +α 2 = log (z+
√
z^2 +α^2 ) + c
6.
∫cos z dz = sin z+c 16.
∫ dz
z^2 +α^2 =1
αtan− 1 z
α+c7.
∫tan z dz = log sec z+c=−log cos z+c 17.
∫ dz
z^2 −α^2 =1
2 αlog(z−α
z+α)
+c8.
∫sec^2 z dz = tan z+c 18.
∫ dz√α (^2) −z 2 = sin −^1 zα+c
9.
∫sec ztan z dz = sec z+c 19.
∫
eαz sin βz dz =eαz αsin βzα 2 −+ββ 2 cos βz +c10.
∫csc zcot z dz =−csc z+c 20.
∫
eαz cos βz dz =eαz αcos βzα 2 ++ββ 2 sin βz +cc denotes an arbitrary constant of integration
Definite integrals
The definite integral of a complex function f(t) = u(t) + iv (t)which is continuous
for ta≤t≤tbhas the form
∫tbtaf(t)dt =∫tbtau(t)dt +i∫tbtav(t)dt (12.189)and has the following properties.
1. The integral of a linear combination of functions is a linear combination of the
integrals of the functions or
∫tbta[c 1 f(t) + c 2 g(t)] dt =c 1∫tbtaf(t)dt +c 2∫tbtag(t)dt