Powers of trigonometric functions
sin^2 A=1
2 −1
2 cos 2A,
sin^3 A=^3
4sinA−^1
4sin 3A,sin^4 A=^3
8−^1
2cos 2A+^1
8cos 4A,cos^2 A=1
2 +1
2 cos 2A
cos^3 A=^3
4cosA+^1
4cos 3Acos^4 A=^3
8+^1
2cos 2A+^1
8cos 4AInverse Trigonometric Functions
sin−^1 x=π 2 −cos−^1 xcos−^1 x=π 2 −sin−^1 xtan−^1 x=π 2 −cot−^1 xsin−^11
x= csc− (^1) x
cos−^11
x
= sec−^1 x
tan−^1
1
x= cot
− (^1) x
Symmetry properties of trigonometric functions
sinθ=−sin(−θ) = cos(π/ 2 −θ) =−cos(π/2 +θ) = + sin(π−θ) =−sin(π+θ)
cosθ= + cos(−θ) = sin(π/ 2 −θ) = + sin(π/2 +θ) =−cos(π−θ) =−cos(π+θ)
tanθ=−tan(−θ) = cot(π/ 2 −θ) =−cot(π/2 +θ) =−tan(π−θ) = + tan(π+θ)
cotθ=−cot(−θ) = tan(π/ 2 −θ) =−tan(π/2 +θ) =−cot(π−θ) = + cot(π+θ)
secθ= + sec(−θ) = csc(π/ 2 −θ) = + csc(π/2 +θ) =−sec(π−θ) =−sec(π+θ)
cscθ=−csc(−θ) = sec(π/ 2 −θ) = + sec(π/2 +θ) = + csc(π−θ) =−csc(π+θ)
Transformations
The following transformations are sometimes useful in simplifying expressions.
- Iftanu
2
=A, thensinu=2 A
1 +A^2 , cosu=1 −A^2
1 +A^2 , tanu=2 A
1 −A^2- The transformationsinv=y, requirescosv=
√
1 −y^2 , andtanv=√ y
1 −y^2
Law of sines
a
sinA= b
sinB= c
sinCLaw of cosines
a^2 =b^2 +c^2 − 2 bccosA
b^2 =c^2 +a^2 − 2 accosB
c^2 =a^2 +b^2 − 2 abcosC