Integrals containingX= 2ax−x^2 , a 6 = 0∫ √
X dx=(x− 2 a)√
X+a2
2 sin− 1(
x−a
|a|)
+C∫ dx
√
X= sin−^1(x−a
|a|)
+C∫
x√
X dx= sin−^1(x−a
|a|)
+C∫ x dx
√
X=−√
X+asin−^1(
x−a
|a|)
+C∫ dx
X^3 /^2 =x−a
a^2√
X+C∫ x dx
X^3 /^2 =x
a√
X+C∫ dx
X =1
2 aln|x
x− 2 a|+C∫ x dx
X =−ln|x−^2 a|+C
145.
∫ dx
X^2 =−1
4 ax−1
4 a^2 (x− 2 a)+1
4 a^2 ln|x
x− 2 a|+C∫ x dx
X^2 =−1
2 a(x− 2 a)+1
4 a^2 ln|x
x− 2 a|+C∫
xn√
X dx=−n^1 + 2xn−^1 X^3 /^2 +(2nn+ 1)+ 2a∫
xn−^1√
X dx, n 6 =− 2∫ √X dx
xn =1
(3− 2 n)aX^3 /^2
xn +n− 3
(2n−3)a∫ √X
xn−^1 dx, n^6 = 3/^2Integrals containingX=ax^2 +bx+cwith ∆ = 4ac−b^2 , ∆ 6 = 0, a 6 = 0∫ dx
X =
√^1
−∆ln( 2 ax+b−√−∆
2 ax+b+√
−∆)
+C 1 , ∆< 0√^2
∆tan−^12 ax√+b
∆+C 2 , ∆> 0−a(x+^1 b/ 2 a)+C 3 , ∆ = 0∫ x dx
X =1
2 cln|X| −b
2 a∫ 1
Xdx∫ x (^2) dx
X =
x
a−
b
2 a^2 ln|X|+
2 ac−∆
2 a^2
∫ dx
X
Appendix C