Begin2.DVI

(Ben Green) #1




∫∞
0

sinax^2 cos 2bx dx=^12


π
2 a

(
cosb

2
a −sin

b^2
a

)





∫∞
0

cosax^2 cos 2bx dx=^12


π
2 a

(
cosb

2
a + sin

b^2
a

)





∫∞
0

dx
x^4 + 2a^2 x^2 cos 2β+a^4 =

π
4 a^3 cosβ





∫∞

0

cos

(
x^2 +a

2
x^2

)
dx=

√π
2 cos(

π
4 + 2a)





∫∞

0

sin

(
x^2 +a

2
x^2

)
dx=

√π
2 sin(

π
4 + 2a)





∫∞

0

tanbx dx
x(p^2 +x^2 )=

π
2 p^2 tanhbp





∫∞

0

xtanbx dx
p^2 +x^2 =

π
2 −

π
2 tanhbp





∫∞
0

xcotbx dx
p^2 +x^2 =

π
2 cothbp





∫∞
0

sinax
sinbx

dx
(p^2 +x^2 )=

π
2 p

sinhap
sinhbp, a < b





∫∞
0

cosax
cosbx

dx
(p^2 +x^2 )=

π
2 p

coshap
coshbp, a < b





∫∞
0

sinax
cosbx

dx
(p^2 +x^2 )=

π
2 p^2

sinhap
coshbp, a < b





∫∞

0

sinax
cosbx

x dx
(x^2 +p^2 )=−

π
2

sinhap
coshbp, a < b





∫∞

0

cosax
sinbx

x dx
(p^2 +x^2 )=

π
2

coshap
sinhbp, a < b

Integrals containing exponential and logarithmic terms





∫ 1

0

ln^1 x
1 +xdx=

π^2
12





∫ 1

0

ln^1 x
(1−x)dx=

π^2
6





∫ 1
0

(
ln^1 x

) 3
1 −x dx=

π^4
15





∫ 1

0

ln(1 +x)
x dx=

π^2
12

Appendix C
Free download pdf