Begin2.DVI

(Ben Green) #1

I8-19. IfV~=∇φ, thendiv~V =∇^2 φ= 0andcurlV~= curl (∇φ) =~ 0


I8-21. Only flux is from top surface and


∫∫

S

F~·dS~ = 16π and from divergence

theorem

∫∫∫

V

divF dV~ = 16π

I8-22. (i) Evaluating the left and right-hand sides of the Green’s theorem one finds


the value -16/3. (ii) See page 192

I8-23. Both sides of the Stokes theorem yield the valueπ/ 4


I8-24. (i)φ=x^2 y+xy^2 =Cis family of solution curves.


I8-25. Area=π


I8-26.


∫∫

S

F~·ˆendS=

∫∫∫

V

divF dV~ = 4πa^3

I8-27. On sphere with radiusr= 1,


∫∫

S

F~·ˆendS=− 4 π/ 3 and on sphere with radius

r= 2one finds

∫∫

S

F~·ˆendS= 32π/ 3 Total flux= 32π/ 3 − 4 π/3 = 28π/ 3

I8-28. On inner surface flux is− 2 πand on outer surface flux is 8 π. Zero flux across


top and bottom surfaces. Total flux= 8π− 2 π= 6π

I8-29. The divergence of F~ is zero and so the sum of the fluxes associated with


the±ˆenfaces must sum to zero. For example,

∫z 1
z 0

∫y 1
y 0 y dydz−

∫z 1
z 0

∫y 1
y 0 y dydz= 0

I8-31. 3 V


Solutions Chapter 8
Free download pdf