I10-10. (a) IfAT=AandBT=B, then(AB)T=BTAT=BA=AB
(b) If((AB)T= (AB), thenBTAT=ABwhich impliesBA=AB
I10-12. IfAB=BA, then one must havec= 0andd=a.
I10-13. ShowA^2 =AandA^3 =A, then showB^2 =IandB^3 =BsoAis idempotnt
andBis involutory.
I10-14. ShowA^2 =IandA^3 =Aso thatAis involutory.
I10-15. ShowB=A^2
I10-16. X=A−^1 B
I10-18. (a) -11 (b) 6 (c) -2
I10-19. (a) 8 (b) 5 (c) 4
I10-20. (a) (mij) =
14 − 5 − 8
2 1 − 1
− 3 −1 2
(b) (cij) =
14 − 5 − 8
−2 1 1
−3 1 2
(c) ACT=
1 0 0
0 1 0
0 0 1
I10-21. 6 xyz
I10-22. (a) 0 (b) 0 (c) 36
(d)a 1 a 2 a 3 a 4 (e)a 1 a 2 a 3 a 4 (f) 45 ,000 = (36)(25)(5)(2)(5)
I10-23. (a)Z−^1 =
1
(z 11 z 22 −z 12 z 21 )
[
z 22 −z 12
−z 21 z 11
]
I10-24. |A|= 3, |B|= 1, |A|·|B|= 3, |AB|= 3
I10-25. (x 2 −x 1 )y−(y 2 −y 1 )x=x 2 y 1 −x 1 y 2
Solutions Chapter 10