I11-11. (a)
(p+q)n=
(
n
0
)
pn+
(
n
1
)
pn−^1 q+···+
(
n
n−x
)
pxqn−x+···
(
n
n
)
qn
(
n
k
)
=
(
n
n−k
)
so that (p+q)n=
∑n
x=0
(
n
n−x
)
pxqn−x=
∑n
x=0
(
n
x
)
pxqn−x= 1 =
∑n
x=0
f(x)
(b)
(p+q)n−^1 =
n∑− 1
x=0
(
n− 1
n− 1 −x
)
pxqn−^1 −x
shift summation index by lettingx=X− 1 so that
(p+q)n−^1 =
∑n
X=1
(
n− 1
n− 1 −X+ 1
)
pX−^1 qn−X=
∑n
X=1
(
n− 1
X− 1
)
pX−^1 qn−X= 1
since
(
n− 1
n− 1 −X+ 1
)
=
(
n− 1
X− 1
)
(c)x
(
n
x
)
=x n!
x!(n−x)!
= n(n−1)!
(x−1)!(n− 1 −(x−1))!
=n
(
n− 1
x− 1
)
(d)
μ=
∑n
x=0
xf(x) =
∑n
x=1
x
(
n
x
)
pxqn−x=
∑n
x=1
n
(
n− 1
x− 1
)
pxqn−x=np
I11-12.
s^2 =^1
N− 1
∑N
j=1
(xj− ̄x)^2 =^1
N− 1
∑N
j=1
(x^2 j−2 ̄xxj+ ̄x^2 )
=^1
N− 1
∑N
j=1
x^2 j−2 ̄x
∑N
j=1
xj+N ̄x^2
=^1
N− 1
∑N
j=1
x^2 j−2 ̄xNx ̄+N ̄x^2
=^1
N− 1
∑N
j=1
x^2 j−Nx ̄^2
Use the fact thatx ̄=^1
N
∑N
j=1
xjand write
s^2 =
1
N(N−1)
N
∑N
j=1
x^2 j−
∑N
j=1
xj
2
Solutions Chapter 11