I11-11. (a)
(p+q)n=(
n
0)
pn+(
n
1)
pn−^1 q+···+(
n
n−x)
pxqn−x+···(
n
n)
qn
(
n
k)
=(
n
n−k)so that (p+q)n=∑nx=0(
n
n−x)
pxqn−x=∑nx=0(
n
x)
pxqn−x= 1 =∑nx=0f(x)(b)(p+q)n−^1 =n∑− 1x=0(
n− 1
n− 1 −x)
pxqn−^1 −xshift summation index by lettingx=X− 1 so that(p+q)n−^1 =∑nX=1(
n− 1
n− 1 −X+ 1)
pX−^1 qn−X=∑nX=1(
n− 1
X− 1)
pX−^1 qn−X= 1since(
n− 1
n− 1 −X+ 1)
=(
n− 1
X− 1)(c)x(
n
x)
=x n!
x!(n−x)!= n(n−1)!
(x−1)!(n− 1 −(x−1))!=n(
n− 1
x− 1)(d)
μ=∑nx=0xf(x) =∑nx=1x(
n
x)
pxqn−x=∑nx=1n(
n− 1
x− 1)
pxqn−x=npI11-12.
s^2 =^1
N− 1∑Nj=1(xj− ̄x)^2 =^1
N− 1∑Nj=1(x^2 j−2 ̄xxj+ ̄x^2 )=^1
N− 1
∑Nj=1x^2 j−2 ̄x∑Nj=1xj+N ̄x^2
=^1
N− 1
∑Nj=1x^2 j−2 ̄xNx ̄+N ̄x^2
=^1
N− 1
∑Nj=1x^2 j−Nx ̄^2
Use the fact thatx ̄=^1
N∑Nj=1xjand writes^2 =1
N(N−1)
N∑Nj=1x^2 j−
∑Nj=1xj
2 Solutions Chapter 11