Begin2.DVI

(Ben Green) #1

I11-11. (a)


(p+q)n=

(
n
0

)
pn+

(
n
1

)
pn−^1 q+···+

(
n
n−x

)
pxqn−x+···

(
n
n

)
qn
(
n
k

)
=

(
n
n−k

)

so that (p+q)n=

∑n

x=0

(
n
n−x

)
pxqn−x=

∑n

x=0

(
n
x

)
pxqn−x= 1 =

∑n

x=0

f(x)

(b)

(p+q)n−^1 =

n∑− 1

x=0

(
n− 1
n− 1 −x

)
pxqn−^1 −x

shift summation index by lettingx=X− 1 so that

(p+q)n−^1 =

∑n

X=1

(
n− 1
n− 1 −X+ 1

)
pX−^1 qn−X=

∑n

X=1

(
n− 1
X− 1

)
pX−^1 qn−X= 1

since

(
n− 1
n− 1 −X+ 1

)
=

(
n− 1
X− 1

)

(c)x

(
n
x

)
=x n!
x!(n−x)!

= n(n−1)!
(x−1)!(n− 1 −(x−1))!

=n

(
n− 1
x− 1

)

(d)
μ=

∑n

x=0

xf(x) =

∑n

x=1

x

(
n
x

)
pxqn−x=

∑n

x=1

n

(
n− 1
x− 1

)
pxqn−x=np

I11-12.


s^2 =^1
N− 1

∑N

j=1

(xj− ̄x)^2 =^1
N− 1

∑N

j=1

(x^2 j−2 ̄xxj+ ̄x^2 )

=^1
N− 1



∑N

j=1

x^2 j−2 ̄x

∑N

j=1

xj+N ̄x^2



=^1
N− 1



∑N

j=1

x^2 j−2 ̄xNx ̄+N ̄x^2


=^1
N− 1



∑N

j=1

x^2 j−Nx ̄^2



Use the fact thatx ̄=^1
N

∑N

j=1

xjand write

s^2 =

1
N(N−1)




N

∑N

j=1

x^2 j−



∑N

j=1

xj



2 



Solutions Chapter 11
Free download pdf