Uncertainty and Probability Optimal Stopping under g–expectations: Theory
Worst–Case Priors
Drift ambiguity
Vis ag–supermartingale
from the Doob–Meyer–Peng decomposition
−dVt=g(t,Zt)dt−ZtdWt+dAt
for some increasing processA
=−κ|Zt|dt−ZtdWt+dAt
Girsanov: =−ZtdWt∗+dAtwith kernelκsgn(Zt)
Theorem (Duality forκ–ambiguity)
There exists a probability measure P∗∈Pκsuch that
Vt= ess supτ≥tEt(Xτ) = ess supτ≥tE∗[Xτ|Ft]. In particular:
maxτ Pmin∈PκEP[Xτ|Ft] = minP∈Pκmaxτ EP[Xτ|Ft]