Chemistry of Essential Oils

(Tuis.) #1

CONIFEE^L 19


Tree
Designa-
tion.

Al
A2
A3
A4
A5
A6
Cl
02
C3
04
Dl
D2
D3
D4

Species.

P. heterophylla
M
tt
P. palustris.
»» •
»» •
P. heterophylla
?i
P. palustris.

»
»
P. heterophylla

Dia-
meter
(inches).

7-0


14-5


24-5


7-3


15-0


21-0


12-3


8-2


13-0


8-7


9 0


13-5


13-0


9-0


Character of Chipping.

1st year, normal depth
>» »

»t »

)> I*


2nd year, shallow.
!• »> •
M >»» •
»t » •
2nd year, normal depth
»» »»
»' »»

Optical
Rotation
100 mm.
Tube.
20 ° "C.

- 20° 50'


+ 0°15'


- 15° 0'


+ 15° 40'


+ 8° 9'


+ 18° 18'


- 27° 11'


- 26° 28'


- 7° 26'


+ 7° 31'


+ 10° 50'


+ 1°23'


- 18° 35'


- 29° 26'


In a general way the figures support the view that the oils of Pinus
palustris are dextro-rotatory and those from Pinus heterophylla laevo-
rotatory. That this is not strictly true, however, is evidenced by the
dextro-rotation of A2 (P. heterophylla), and more especially by the laevo-
rotation of 03 (P. palustris).
With these variations in the first collection from the several trees,
the question naturally arose, would the variations change as the season
advanced or would the figures prove constant for the individual trees?
The rotations for the successive collections are as follows:—


OPTICAL KOTATION IN 100 MM. TUBE, 20 ° C.

Collection.
1 2 3 4 5 6 7

Collection.
1 2 8 4 5 6 7

Al.


  • 20°

  • 22°

  • 21°

  • 21°
    -20°
    -20°

  • 22°
    C2.
    -26°
    -25°

  • 26°

  • 26°

  • 26°

  • 26°

  • 26°


50'


5'


45'


7'


30'


15'


15'


28'


37'


20'


30'


r
0'
28'

A2.


+ 0°


-0°


+ 0°


- 1°


- 2°


- 3°


- 5°


03.


- 7°


- 6°


- 4°


- 4°


— 3°


- 4°


- 6°


15'


30'


15'


15'


5'


30'


45'


26'


42'


45'


29'


55'


5'


6'


A3.


- 15°


- 14°


- 15°


-15°


- 15°


- 15°


- 17°


C4.


+ 7°


+ 7°


0'


26'


55'


50'


15'


27'


52'


31'


20'


A4.


+ 15°


+ 15°


+ 14°


+ 14°


+ 14°


+ 14°


+ 12°


Dl.
+ 10°
+ 11°
+ 13°
+ LV°^4
+ 13°
+ 13°
+ 10°

40'


22'


15'


20'


21'


35'


49'


50'


23'


7'


46'


0'


0'


48'


A5.


+ 8° 9'


+ 8° 50'


+ 8° 27'


+ 8° 34'


+ 8° 32'


+ 8° 4'


+ 7° 6'


D2.


+ 1° 23'


+ 2° 40'


+ 2° 25'


+ 2° 22'


+ 1° 13'


+ 1° 15'


- 0°55


A6.


+ 18°


+ 17°


+ 19°


+ 18°


+ 19°


+ 1">°


+ 14°


D3.


- 18°


- 17°


- 15°


- 15°


- 14°


- 14°


- 14°


18'


43'


30'


46'


24'


16'


47'


35'


0'


20'


0'


38'


7'


19'


01.


- 27°


- 26°


11'


48'


- 26° 25'


-23°


- 21°


- 21°


- 21°


D4.


- 29°


- 27°


- 28°


- 27°


- 27°


- 26°


- 26°


32'


12'


46'


35'


26'


45'


19'


38'


48'


11'


12'


Wood turpentine can, however, be so rectified as to distil at tempera-
tures much closer to those of normal turpentine than is shown in the
table on p. 18, so that whilst positive results indicate the presence of wood
turpentine, negative results do not necessarily exclude its presence.
Free download pdf