(PFM) measurements ( 21 )ofthecrystalline
LaWN 3 film synthesized on the heated sub-
strate (Fig. 1 and figs. S1 and S2). We used a
<25-nm-radius tip to probe the electromechan-
ical response of uncapped crystalline thin films
that were insulating according to conductive
atomic force microscopy (c-AFM) measure-
ments (fig. S6). Our PFM results show qual-
itatively unambiguous piezoelectric response
(Fig. 4, A to F), with 65% of more than 4000pixels in a map (Fig. 4D) having coefficient of
determination (R^2 ) > 0.8 fit of piezoelectric
amplitude versus drive voltage (Fig. 4E). Our
statistical analysis of these measurement re-
sults (Fig. 4F) in terms of mean and median1490 17 DECEMBER 2021¥VOL 374 ISSUE 6574 science.orgSCIENCE
500 500400 400300 300200 200100 10000Piezoelectric Amplitude (pm)0 2 4 6 8 10 12
Drive Voltage (V)65% of pixels have R
2
> 0.8
R^2 =0.800
R
2
=0.9984002000Sample Dimension (nm)40040020020000
Sample Dimension (nm)-1.2-0.8-0.40.00.40.81.2Surface Height (nm)4002000Sample Dimension (nm)40040020020000
Sample Dimension (nm)1.00
0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82
0.80R
240200d33,f(pm/V)110.950.950.90.90.850.850.80.8
R
2123456102PixelsMeanQ2Q1Q3Q2Mean4002000Sample Dimension (nm)40040020020000
Sample Dimension (nm)60
55
50
45
40
35
30
25
20
15
1033,fd
(pm/V)AC EF4002000Sample Dimension (nm)40040020020000
Sample Dimension (nm)180
160
140
120
100
80
60
40
20
0Response Phase (degree)B DFig. 4. Piezoelectric properties of LaWN 3 thin films.(A) Atomically smooth
surface of a single LaWN 3 grain. (B) Phase, (C) linearity, and (D) slope of
each of more than 4000 pixels withR^2 > 0.8 for piezoelectric amplitude versus
drive voltage fits. (E) The best and worst fits included in this analysis resulting in
(F) a three-dimensional histogram of thesed33,fandR^2 values, indicating a mean
(green) and median (magenta) value of the piezoelectric response. Analysis of
LiNbO 3 , PZT, and (Al0.92Sc0.08)N reference samples and details of the PFM
measurements are provided in the supplementary materials (figs. S7 to S10).5.5 5.5
5.0 5.0
4.5 4.5
4.0 4.033
22
11
00qy(2/)4433221100-1-1-2-2-3-3-4-4qx (2/)qx (2/)10
3
2 4 68104
2 4 68105Countsyq
(2
/
)Counts (a.u)10010090908080707060605050404030302020Cuk diffraction angle (deg.)W (111)(112)(011)(011)(022)(233) (013) (112)(224) (022)(123) (134)
(004) (444)(123) (114)(125) (345)Obs.
Calc.
Diff.
wR = 4.39201612840nm-1
(010)(010)
(200)(020)(020)(200)(100) (100)800
700
600
500
400
300
200
100
0nmSi(100)LaWN 3Pt20151050nm-1
(110)(110)(121)
(211)(121)(211)(110)(220)(220)50
45
40
35
30
25
20
15
10
5
0(110)A B C ED Fa = 5.64 Å
= 60.33 ÅFig. 3. Crystal structure of LaWN 3 thin films.(A) Two-dimensional XRD
pattern, indicating randomly oriented polycrystalline microstructure. (B) Rietveld
refinement of XRD data for LaWN 3 thin films with a predicted rhombohedral
unit cell of R3c symmetry (space group 161) and body-centered cubic (bcc)
tungsten (W) minority phase (<5% by volume). (C) STEM–HAADF (high angle
annular dark field) image of an as-deposited crystalline film highlighting a single
grain (white) and (D) SAED from this grain showing a pseudo-cubic perovskite
[001]–type pattern. (E) High-resolution image of a single grain showing the
pseudo-cubic (011) lattice spacing and (F) the associated fast Fourier transform
indexed with a pseudo-cubic [113] type pattern.RESEARCH | REPORTS