178 MECHANICAL ENGINEERING PRINCIPLESpdD 1D 2pqFigure 15.15
as shown in Figure 15.15, and
d=(D 1 +D 2 )
2Ifμis the coefficient of friction up the slope, then
let tanλ=μ.
Referring now to Figure 15.16, the screw jack can
be analysed.
PN
WF qqMotionFigure 15.16
Resolving normal to the plane gives:
N=Wcosθ+Psinθ( 15. 24 )Resolving parallel to the plane gives:
Pcosθ=F+Wsinθ( 15. 25 )and F=μN ( 15. 26 )
Substituting equation (15.26) into equation (15.25)
gives:
Pcosθ=μN+Wsinθ( 15. 27 )Substituting equation (15.24) into equation (15.27)
gives:Pcosθ=μ(Wcosθ+Psinθ)+WsinθDividing each term by cosθand remembering that
sinθ
cosθ=tanθgives:P=μ(W+Ptanθ)+WtanθRearranging gives:P( 1 −μtanθ)=W(μ+tanθ)from which, P=W(μ+tanθ)
( 1 −μtanθ)=W(tanλ+tanθ)
( 1 −tanλtanθ)sinceμ=tanλ
However, from compound angle formulae,tan(λ+θ)=(tanλ+tanθ)
( 1 −tanλtanθ)
Hence, P=Wtan(θ+λ) ( 15. 28 )However, from Figure 15.15,tanθ=p
πdhence P=W(
μ+p
πd)(
1 −μp
πd) ( 15. 29 )Multiplying top and bottom of equation (15.29) by
πdgives:P=W(μπd+p)
(πd−μp)( 15. 30 )Theuseful work donein lifting the weightW a
distance ofp=Wp ( 15. 31 )From Figure 15.15,the actual work done=P×πd=W(μπd+p)
(πd−μp)×πd ( 15. 32 )