50 MECHANICAL ENGINEERING PRINCIPLES
F 3
F 4
R 2 = 6.25 kN
30 °
Figure 4.36
Resolving forces vertically:
R 2 +F 4 sin 30°= 0
i.e. R 2 + 0. 5 F 4 = 0
or F 4 =−
R 2
0. 5
( 4. 15 )
SinceR 2 = 6 .25,F 4 =−
6. 25
0. 5
i.e. F 4 =− 12 .5kN(compressive)
( 4. 16 )
Resolving forces horizontally:
F 3 +F 4 cos 30°= 0
i.e. F 3 =−F 4 cos 30° ( 4. 17 )
Substituting equation (4.16) into equation (4.17)
gives:
F 3 =−(− 12. 5 )× 0. 866
i.e. F 3 = 10 .83 kN(tensile)
Consider joint (3); see Figure 4.37.
F 5
F 6
4 kN
30 °
30 °
30 °
F 1 = −11.5 kN
Figure 4.37
Resolving forces vertically:
F 6 sin 30°=F 1 sin 30°+F 5 sin 30°+ 4
i.e. F 6 =F 1 +F 5 +
4
sin 30°
( 4. 18 )
Substituting equation (4.13) into equation (4.18)
gives:
F 6 =− 11. 5 +F 5 + 8 ( 4. 19 )
Resolving forces horizontally:
F 1 cos 30°=F 5 cos 30°+F 6 cos 30°
i.e. F 1 =F 5 +F 6 ( 4. 20 )
Substituting equation (4.13) into equation (4.20)
gives:
− 11. 5 =F 5 +F 6
or F 6 =− 11. 5 −F 5 ( 4. 21 )
Equating equations (4.19) and (4.21) gives:
− 11. 5 +F 5 + 8 =− 11. 5 −F 5
or F 5 +F 5 =− 11. 5 + 11. 5 − 8
i.e. 2 F 5 =− 8
from which, F 5 =−4kN(compressive)
( 4. 22 )
Substituting equation (4.22) into equation (4.21)
gives:
F 6 =− 11. 5 −(− 4 )
i.e. F 6 =− 7 .5kN(compressive) ( 4. 23 )
Consider joint (4);see Figure 4.38.
3 kN
30 ° 30 °
F 6 =−7.5 kN F^7 F
8
Figure 4.38
Resolving forces horizontally:
F 6 cos 30°=F 8 cos 30°
i.e. F 6 =F 8
but from equation (4.23),
F 6 =− 7 .5kN
Hence, F 8 =− 7 .5kN(compressive) ( 4. 24 )