BENDING MOMENT AND SHEAR FORCE DIAGRAMS 77
Problem 5. Determine the bending moment
and shearing force diagram for the cantilever
shown in Figure 6.24, which is rigidly
constrained at the endB.
A
5 kN 10 kN
B
C
2 m 1 m
Figure 6.24
For the spanAtoC, see Figure 6.25.
5 kN
x
A
Figure 6.25
Bending moment (BM)
At x, M=−5kN×x
i.e. M=− 5 x(a straight line) ( 6. 23 )
Shearing force (SF)
At x, F=−5kN(constant) ( 6. 24 )
For the spanCtoB, see Figure 6.26.
5 kN 10 kN
C
A
2m
x
Figure 6.26
Bending moment (BM)
At x, M=−5kN×x−10 kN×(x− 2 )
=− 5 x− 10 x+ 20
i.e. M= 20 − 15 x(a straight line) ( 6. 25 )
At C, x=2m,thereforeMC= 20 − 15 × 2
= 20 − 30
i.e. MC=−10 kN m
(b) SF diagram (kN)
A
F
− 5 − 5
− 15 − 15
0 CB 0 x
(a) BM diagram (kN m)
A
M
B
C
0 x
M=− 5 x − 10
− 25
M= 20 − 15 x
x= 0
Figure 6.27
AtB, x=3m,thereforeMB= 20 − 15 × 3
= 20 − 45
i.e. MB=−25 kNm
Shearing force (SF)
Atxin Figure 6.26,
F=−5kN−10 kN
i.e. F=−15 kN(constant) ( 6. 26 )
From equations (6.23) to (6.26) and the associated
calculations, the bending moment and shearing force
diagrams can be plotted, as shown in Figure 6.27.
Now try the following exercise
Exercise 31 Further problems on bending
moment and shearing force
diagrams
Determine expressions for the bending mo-
ment and shearing force distributions for each
of the following simply supported beams;
hence, or otherwise, plot the bending moment
and shearing force diagrams.
- Figure 6.28
[see Figure 6.43(a) on page 82)]