Appendix: ProofsA. ARMA Representation of the Return ProcessLet us begin by recalling Eq. (5) from the text (suppressing constants):
(A.1)It follows that
(A.2)Assuming that φsatisfies proper conditions to be specified, ∆Ptis a cov-
anance stationary process. Let
αk≡E[∆Pt∆Pt−k](i.e., the unconditional autocovariance lagged kperiods). When k=0, we
have the unconditional variance. The autocovariances of this process sat-
isfy the following Yule-Walker equations.
(A.3)And for k>0, we have
(A.4)It is not hard to verify that for k>z−1,
(A.5)And for k≤z−1, we have
(A.6)E
z
Pzk
zE
zPE
zP
ti
iz
tkti
iz
tkti
iz
tkjε σ
φε
φ
+ ε
=−
−+
=−
−++
=−∑∑∑−++
=−
+
−
0 (^12)
2
0
1
1
0
1
∆∆∆ 1
()
() ( )
E
z
P
ti
i
z
tk
ε+
−
∑ −
=
11
∆ 0.αε
k φα φαti
iz
=E z Ptk k k j
+−
+
=−∑ −−−+
01
∆ 11 ().αε
0 φα φα
01
= 11
+−
+
=−E∑ z P +
ti
iz
∆tj.∆∆∆P
z
t PPi tiz=+−ttj
= +−−−+∑ ε
φφ
0111 ().PD
z
zz
tt t tz Pti
ij
=+
−
++− −+⋅⋅⋅+ +
=∑
() 11
11
1εεφ∆532 HONG AND STEIN