Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1

([DPSOH


D௘ͽ :KDWLVWKHUDGLXVRIDFLUFOHZLWKWKHVDPHDUHDDVDVTXDUHRIVLGHOHQJWKXQLWV"
E௘ͽ :KDWLVWKHDUHDRIWKHFLUFOHZLWKHTXDWLRQͼ௘xí௘ͽ^2 + y^2 = 17? What is the circumference of this circle?
6ROXWLRQ


D௘ͽ :HQHHGʌU^2 = 16. This gives r (^4) S.
E௘ͽ 7KLVLVWKHHTXDWLRQRIDFLUFOHRIUDGLXV 17.
The circumference of this circle is 217,S DQGLWVDUHDLVʌ
([DPSOH
Find the area of the shaded region shown in )LJXUH.
6ROXWLRQ
We can compute the area of the shaded region by computing the area of the
HQWLUHVHFWRUZLWKFHQWUDODQJOHƒDQGVXEWUDFWLQJIURPLWWKHDUHDRIWKH
LVRVFHOHVWULDQJOHͼ௘LQIDFWHTXLODWHUDOWULDQJOHEHFDXVHDOODQJOHVPXVWKDYH
PHDVXUHƒ௘ͽZLWKVLGHOHQJWKͼ௘6HH)LJXUH௘ͽ
area of sector = 36060 SS5.^2 256
area of equilateral triangle = 22415 ˜˜  (^552) ̈ ̧§·©¹^2 25 3.
ͼ௘6HH)LJXUH௘ͽ
Thus, the area of the shaded region is^2564 S25 3 square units.


5 60°


Figure 22.1

5 60°
60°

Figure 22.2

5 30° 30°


(^52)
Figure 22.3

Free download pdf