([DPSOH
Dͽ :KDWLVWKHUDGLXVRIDFLUFOHZLWKWKHVDPHDUHDDVDVTXDUHRIVLGHOHQJWKXQLWV"
Eͽ :KDWLVWKHDUHDRIWKHFLUFOHZLWKHTXDWLRQͼxíͽ^2 + y^2 = 17? What is the circumference of this circle?
6ROXWLRQ
Dͽ :HQHHGʌU^2 = 16. This gives r (^4) S.
Eͽ 7KLVLVWKHHTXDWLRQRIDFLUFOHRIUDGLXV 17.
The circumference of this circle is 217,S DQGLWVDUHDLVʌ
([DPSOH
Find the area of the shaded region shown in )LJXUH.
6ROXWLRQ
We can compute the area of the shaded region by computing the area of the
HQWLUHVHFWRUZLWKFHQWUDODQJOHDQGVXEWUDFWLQJIURPLWWKHDUHDRIWKH
LVRVFHOHVWULDQJOHͼLQIDFWHTXLODWHUDOWULDQJOHEHFDXVHDOODQJOHVPXVWKDYH
PHDVXUHͽZLWKVLGHOHQJWKͼ6HH)LJXUHͽ
area of sector = 36060 SS5.^2 256
area of equilateral triangle = 22415 (^552) ̈ ̧§·©¹^2 25 3.
ͼ6HH)LJXUHͽ
Thus, the area of the shaded region is^2564 S25 3 square units.
5 60°
Figure 22.1
5 60°
60°
Figure 22.2
5 30° 30°
(^52)
Figure 22.3