Lesson 29: Folding and Conics
Example 1
3RLQWLQJDÀDVKOLJKWGLUHFWO\WRZDUGDZDOOSURGXFHVDFLUFOHRIOLJKWDJDLQVWWKHZDOO
ͼ6HHFigure 29.4ͽ
Dͽ :KDWVKDSHRIOLJKWDSSHDUVRQWKHZDOOLI\RXDQJOHWKHÀDVKOLJKWVOLJKWO\"
ͼ6HHFigure 29.5ͽ
Eͽ :KDWVKDSHRIOLJKWDSSHDUVRQWKHZDOOLI\RXSODFHWKHÀDVKOLJKWYHUWLFDOO\
DJDLQVWWKHZDOO"ͼ6HHFigure 29.6ͽ
Solution
$ÀDVKOLJKWSURGXFHVDFRQHRIOLJKWDQGHDFKRIWKHVKDSHVRIOLJKWSURGXFHGRQD
wall represents a slice of this cone.
,QDͽWKHFRQLFVHFWLRQSURGXFHGLVDQHOOLSVH
,QEͽWKHFRQLFVHFWLRQSURGXFHGLVͼKDOIRIͽDK\SHUERODͼ+RZSUHFLVHO\ZRXOG\RX
QHHGWRDQJOHWKHÀDVKOLJKWLQRUGHUWRVHHDSDUDEROD"ͽ
Example 2
Show that the graph of y = x^2 , called a parabola in algebra class, really is a parabola.
ͼ6KRZWKDWLWLVDSDUDERODZLWKIRFXV 1 F (^) ̈ ̧©¹§·0, 41 and directrix the horizontal line
y 4.
Solution
/HWͼx, yͽEHDSRLQWRQWKHSDUDERODZLWKIRFXVF (^) ̈ ̧©¹§·0, 41
and directrix y ^14.
Its distance from F is xy^2 ©¹ ̈ ̧§·^142 , and its distance from the
directrix is y^14.
These need to match, giving the equation xy^2 §· ̈ ̧©¹^11442 y.
Figure 29.4
Figure 29.5
Figure 29.6
14 ͼx, yͽ
^14
Figure 29.7