Lesson 34: The Geometry of Figurate Numbers
- We have proved that
123 " N NN^2 ^1
and that
12 "" NNN 1 1 21 N^2.
&RQVLGHUWKHIROORZLQJDUUD\RIPXOWLSOLFDWLRQSUREOHPV
11 12 13 14
2122 23 24
31 32 33 34
4142 43 44
uu uu
uu uu
uu uu
uu uu
7KHVXPRIWKHHQWULHVLQWKH¿UVWURZLVîͼͽDQGWKHVXPRIWKHHQWULHVLQWKHVHFRQGURZLV
îͼͽDQGVRRQ
Dͽ ([SODLQZK\WKHVXPRIDOOWKHHQWULHVLQWKHHQWLUHWDEOHHTXDOV
ͼͽ^2.
Eͽ 7KHWDEOHFDQEHGLYLGHGLQWRJQRPRQVͼ/VKDSHVͽ
11 12 13 14
2122 23 24
31 32 33 34
4142 43 44
uu uu
uu uu
uu uu
uu uu
Explain why the sum of the entries in the entire table is also
îîͼͽîͼͽîͼͽ
Fͽ ([SODLQZK\ZHKDYHMXVWSURYHGWKDW^3 + 2^3 + 3^3 + 4^3 ͼͽ^2.
Gͽ ([SODLQWKHIRUPXOD 123333 "N^3 NN^24 ^12.