- i. Label the lengths a, b, x, y, z as shown in Figure S.8.2.
ii. Triangles FUM and LUMDUHULJKWWULDQJOHVͼZLWKULJKWDQJOHDWUͽ
because UFAUM.
iii. axyz and byz because RIWKH3\WKDJRUHDQ
theorem.
iv. a! b because x + y! y.
That is, FM! LM. - i. Label angles a 1 , a, b, c, d, e as shown in Figure S.8.3.
ii. a 1 = a because given.
iii. e = a and d = a 1 because alternate interior angles for
parallel lines.
iv. d = a because of the previous two steps.
v. d + c EHFDXVHUBAYB.
vi. a + b EHFDXVHVDPHVLGHLQWHULRUDQJOHVDGGWR
vii. cdba DQG because of algebra.
viii. b = c because a = d from step 4.
That is, #YUB RBU. - i. Label angle w as shown in Figure S.8.4.
ii. z + w EHFDXVHRQDVWUDLJKWOLQH
iii. x + y + w EHFDXVHLQDWULDQJOH
iv. zwxyw DQG because of algebra.
Y 6Rz = x + y.
F
U
L
M
a
b
x
y
z
Figure S.8.2
R
Y
U
B
a 1 a (^2) b
e d c
Figure S.8.3
x
y
w z
Figure S.8.4