The area of the inner square is
2 2 2 2
2
2
2
2
2
1 11
1
(^11)
(^1).
1
xab xx x
x
xx
x
x
§· ̈ ̧ ̈ ̧
©¹
§· ̈ ̧
©¹
Lesson 29
- %HFDXVHRSSRVLWHIDFHVRIDVWLFNRIEXWWHUDUHSDUDOOHODQ\FURVVVHFWLRQ
that intersects a pair of opposite faces has a pair of parallel sides.
Thus, all cross sections are parallelograms—or trapezoids if the slicing
SODQHLQWHUFHSWVDVTXDUHHQGRIWKHEXWWHUDVVKRZQLQFigure S.29.1.
ͼ$FWXDOO\FURVVVHFWLRQVFRXOGEHWULDQJXODUWRR'R\RXVHHKRZ"ͽ - ,WLV)ROORZSUHFLVHO\WKHVDPHDUJXPHQWGLVFXVVHGLQWKHOHVVRQJLYHQE\LQVHUWLQJWZRVSKHUHVLQWKH
cylinder that each just touch the plane of the cross section. - 6XSSRVHWKDWDSRLQWP ͼx, yͽLVRQDQHOOLSVHZLWKIRFL
F ͼícͽDQGG ͼcͽVDWLVI\LQJFP + PG = k, for some
QXPEHUk.1RWLFHE\WKHWULDQJXODULQHTXDOLW\WKDWFP + PG!
FG. That is, k! 2 c6HHFigure S.29.2.
The equation FP + PG = k reads
xc y ^2222 xc y k.
Rewrite this as
xc y k ^2222 xc y,
DQGVTXDUHHDFKVLGHWRREWDLQ
xc y k xc y ^222222 2.k xc y 2
Figure S.29.1
P ͼx, yͽ
íC C
Figure S.29.2