SULVPͼͽ: $F\OLQGHUZLWKDSRO\JRQIRULWVEDVH6HHDOVRcylinder.
S\UDPLGͼͽ: $FRQHZLWKDSRO\JRQIRULWVEDVH6HHDOVRcone.
UDGLXVͼͽ: $OLQHVHJPHQWFRQQHFWLQJWKHFHQWHURIDFLUFOHWRDSRLQWRQWKHFLUFOHLVFDOOHGDUDGLXVRIWKH
circle. The length of any such line segment is called the radius of the circle.
UHÀHFWLRQͼͽ$UHÀHFWLRQLQDSODQHDERXWDOLQHL is a mapping that takes each point P in the plane not
on L to a point PƍVRWKDWLLVWKHSHUSHQGLFXODUELVHFWRURIPPc. It keeps each point on L¿[HGLQSODFH
6HHDOVRmapping.
UHÀH[DQJOHͼͽ: $QDQJOHZLWKPHDVXUHVWULFWO\EHWZHHQDQGLVDUHÀH[DQJOH
UHJXODUSRO\JRQͼͽ$SRO\JRQWKDWLVERWKHTXLODWHUDODQGHTXLDQJXODU6HHDOVR equiangular, equilateral.
regular cone orUHJXODUF\OLQGHUͼͽ: $FRQHRUF\OLQGHULVVDLGWREHUHJXODULILWVEDVHLVDUHJXODUSRO\JRQ
and all of its lateral faces are congruent. 6HHDOVR cone, cylinder.
UKRPEXVͼͽ: $QTXDGULODWHUDOZLWKIRXUFRQJUXHQWVLGHV
ULJKWDQJOHͼͽ: $QDQJOHZLWKPHDVXUHLVDULJKWDQJOH
ULJKWWULDQJOHͼͽ: $WULDQJOHZLWKRQHRILWVLQWHULRUDQJOHVDULJKWDQJOH6HHDOVRright angle.
URWDWLRQͼͽ$URWDWLRQLQWKHSODQHDERXWDSRLQWO through a counterclockwise angle of xLVWKHPDSSLQJ
that takes each P in the plane different from O to a point PƍVXFKWKDWWKHOLQHVHJPHQWVOPandOPc are
congruent and the angle from OPtoOPc, measured in a counterclockwise direction, is x7KHURWDWLRQNHHSV
the point OLWVHOI¿[HGLQSODFH6HHDOVRmapping.
VDPHVLGHLQWHULRUDQJOHVͼͽ: Given a pair of lines and a transversal, a pair of nonadjacent angles sitting
EHWZHHQWKHSDLURIOLQHVDQGSRVLWLRQHGRQWKHVDPHVLGHRIDWUDQVYHUVDODUHVDPHVLGHLQWHULRUDQJOHV ͼ7KH
PHDVXUHVRIVDPHVLGHLQWHULRUDQJOHVVXPWRSUHFLVHO\ZKHQWKHWZROLQHVDUHSDUDOOHOͽ
VFDOHQHWULDQJOHͼͽ: $WULDQJOHZLWKWKUHHGLIIHUHQWVLGHOHQJWKV
VHFDQWWRDFLUFOHͼͽ: $OLQHWKDWLQWHUFHSWVDFLUFOHDWWZRGLVWLQFWSRLQWV
VHFWRURIDFLUFOHͼͽ7KH¿JXUHIRUPHGE\WZRUDGLLRIDFLUFOHDQGDQDUFRIWKHFLUFOHEHWZHHQWKHP
greg delong
(Greg DeLong)
#1