Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1

SULVPͼ௘௘ͽ: $F\OLQGHUZLWKDSRO\JRQIRULWVEDVH6HHDOVRcylinder.
S\UDPLGͼ௘௘ͽ: $FRQHZLWKDSRO\JRQIRULWVEDVH6HHDOVRcone.
UDGLXVͼ௘௘ͽ: $OLQHVHJPHQWFRQQHFWLQJWKHFHQWHURIDFLUFOHWRDSRLQWRQWKHFLUFOHLVFDOOHGDUDGLXVRIWKH
circle. The length of any such line segment is called the radius of the circle.
UHÀHFWLRQͼ௘௘ͽ$UHÀHFWLRQLQDSODQHDERXWDOLQHL is a mapping that takes each point P in the plane not
on L to a point PƍVRWKDWLLVWKHSHUSHQGLFXODUELVHFWRURIPPc. It keeps each point on L¿[HGLQSODFH
6HHDOVRmapping.
UHÀH[DQJOHͼ௘௘ͽ: $QDQJOHZLWKPHDVXUHVWULFWO\EHWZHHQƒDQGƒLVDUHÀH[DQJOH
UHJXODUSRO\JRQͼ௘௘ͽ$SRO\JRQWKDWLVERWKHTXLODWHUDODQGHTXLDQJXODU6HHDOVR equiangular, equilateral.
regular cone orUHJXODUF\OLQGHUͼ௘௘ͽ: $FRQHRUF\OLQGHULVVDLGWREHUHJXODULILWVEDVHLVDUHJXODUSRO\JRQ
and all of its lateral faces are congruent. 6HHDOVR cone, cylinder.
UKRPEXVͼ௘௘ͽ: $QTXDGULODWHUDOZLWKIRXUFRQJUXHQWVLGHV
ULJKWDQJOHͼ௘௘ͽ: $QDQJOHZLWKPHDVXUHƒLVDULJKWDQJOH
ULJKWWULDQJOHͼ௘௘ͽ: $WULDQJOHZLWKRQHRILWVLQWHULRUDQJOHVDULJKWDQJOH6HHDOVRright angle.
URWDWLRQͼ௘௘ͽ$URWDWLRQLQWKHSODQHDERXWDSRLQWO through a counterclockwise angle of xƒLVWKHPDSSLQJ
that takes each P in the plane different from O to a point PƍVXFKWKDWWKHOLQHVHJPHQWVOPandOPc are
congruent and the angle from OPtoOPc, measured in a counterclockwise direction, is xƒ7KHURWDWLRQNHHSV
the point OLWVHOI¿[HGLQSODFH6HHDOVRmapping.
VDPHVLGHLQWHULRUDQJOHVͼ௘௘ͽ: Given a pair of lines and a transversal, a pair of nonadjacent angles sitting
EHWZHHQWKHSDLURIOLQHVDQGSRVLWLRQHGRQWKHVDPHVLGHRIDWUDQVYHUVDODUHVDPHVLGHLQWHULRUDQJOHV ͼ௘7KH
PHDVXUHVRIVDPHVLGHLQWHULRUDQJOHVVXPWRƒSUHFLVHO\ZKHQWKHWZROLQHVDUHSDUDOOHO௘ͽ
VFDOHQHWULDQJOHͼ௘௘ͽ: $WULDQJOHZLWKWKUHHGLIIHUHQWVLGHOHQJWKV
VHFDQWWRDFLUFOHͼ௘௘ͽ: $OLQHWKDWLQWHUFHSWVDFLUFOHDWWZRGLVWLQFWSRLQWV
VHFWRURIDFLUFOHͼ௘௘ͽ7KH¿JXUHIRUPHGE\WZRUDGLLRIDFLUFOHDQGDQDUFRIWKHFLUFOHEHWZHHQWKHP

Free download pdf