The Nature of Parallelism
Lesson 7
Topics
x Parallel lines.
x (XFOLG¶VSDUDOOHOSRVWXODWH
x (UDWRVWKHQHV¶PHDVXUHPHQWRIWKHFLUFXPIHUHQFHRIWKH(DUWK
'H¿QLWLRQV
x alternate interior angles: PQDSDLURIOLQHVDQGDWUDQVYHUVDODSDLURIQRQDGMDFHQWDQJOHVVLWWLQJ
EHWZHHQWKHSDLURIOLQHVDQGSRVLWLRQHGRQRSSRVLWHVLGHVRIDWUDQVYHUVDODUHDOWHUQDWHLQWHULRUDQJOHV
x parallel:7ZROLQHVHDFKLQ¿QLWHLQH[WHQWDUHSDUDOOHOLIWKH\QHYHUPHHW
x same-side interior angles:*LYHQDSDLURIOLQHVDQGDWUDQVYHUVDODSDLURIQRQDGMDFHQWDQJOHVVLWWLQJ
EHWZHHQWKHSDLURIOLQHVDQGSRVLWLRQHGRQWKHVDPHVLGHRIDWUDQVYHUVDODUHVDPHVLGHLQWHULRUDQJOHV
x transversal:$OLQHWKDWFURVVHVDSDLURIOLQHV
Results
,QWKHGLDJUDPVLQFigure 7.1
x ,IWKHWZROLQHVDUHSDUDOOHOWKHQxy
ͼZHKDYHVDPHVLGHLQWHULRUDQJOHVVXPPLQJ
WRͽDQGFRQYHUVHO\LIxy
WKHQWKHWZROLQHVDUHSDUDOOHO
x ,IWKHWZROLQHVDUHSDUDOOHOWKHQa = bͼZHKDYHFRQJUXHQWDOWHUQDWHLQWHULRUDQJOHVͽDQGFRQYHUVHO\
if a = bWKHQWKHOLQHVDUHSDUDOOHO
Notation
x The notation HJJAB CDG HJJG|| denotes that lines HJJABG and CDHJJGDUHSDUDOOHO
x ,QGLDJUDPVSDUDOOHOOLQHVDUHPDUNHGZLWKDUURZV
y
x a
b
x + y = 180° a = b
Figure 7.1