Lesson 12: Equidistance—A Focus on Distance
- Which of the following points are equidistant from A ͼͽDQGB ͼͽ"
Dͽ P (3, 6)
Eͽ Q (2,7)
Fͽ R (6, 3)
Gͽ S (12, 9 )
Hͽ T (2,3)
Iͽ U (10, 4 )
ͼ:KDWLVDQHI¿FLHQWZD\WRKDQGOHWKLVTXHVWLRQ"ͽ - Dͽ :LWKRXWSORWWLQJWKHSRLQWVVKRZWKDWA ͼͽB ͼíͽDQGC ͼíͽIRUPDQ
isosceles triangle.
Eͽ &RPSXWHWKHPLGSRLQWVRILWVWKUHHVLGHV
Fͽ 6KRZWKDWWKHPLGSRLQWVDOVRIRUPDQLVRVFHOHVWULDQJOH - Given: P is on the perpendicular bisector of AB.
P is on the perpendicular bisector of BC.
Prove: PA = PC.
ͼ6HHFigure 12.4ͽ
Problems
A
B
P C
Figure 12.4