/HVVRQ7KH&ODVVL¿FDWLRQRI7ULDQJOHV
Solution
Dͽ 7KHWULDQJOHLVFOHDUO\LVRVFHOHV$QGEHFDXVH^2 + 7^2! 72 WKHODUJHVWDQJOHLQWKHWULDQJOHͼRQH
RSSRVLWHDVLGHOHQJWKRIͽLVDFXWH7KXVDOOWKUHHLQWHULRUDQJOHVDUHDFXWHDQGLWLVDQDFXWHLVRVFHOHV
triangle.
Eͽ $WULDQJOHIRUH[DPSOHLVLVRVFHOHVDQGREWXVHͼEHFDXVH^2 + 2^2! 32 ͽ$ 2 triangle is
isosceles and right.
Fͽ $WULDQJOHGRHVQRWH[LVWͼ7KLVLVEHFDXVHLVQRWODUJHU
WKDQͽ
Example 3
What is the value of yDQGZK\"ͼ6HHFigure 15.3ͽ
Solution
Angle y is part of a triangle, and because
22 3522 =, it is a right angle.
Example 4
What are the values of z and w"([SODLQͼ6HHFigure 15.4ͽ
Solution
7KHWZRWULDQJOHVDUHVLPLODUE\6$6ͼYHUWLFDODQJOHVDQGWKH
VLGHVDQGDQGDQGFRPHLQDUDWLRͽ7KXVz = 36.
Because 15^2 + 36^2 = 39^2 , we have w = 90°.
Study Tip
x ,WLVGLI¿FXOWWRPHPRUL]HWKHIROORZLQJ³,Ia^2 + b^2! c^2 , then the angle is ... .” Instead, hold on to the
image of the three squares on a right triangle and imagine how the area of the largest square changes as
the right angle is decreased to an acute angle or increased to an obtuse angle.
Pitfall
x Save some work and apply the “a^2 + b^2 versus c^2 ́DQDO\VLVWRRQO\RQHDQJOHLQDJLYHQWULDQJOH²
namely, the largest one, opposite the largest side of the triangle.
y^3
2
2
3
Figure 15.3
w
z
24 10 15
(^2639)
Figure 15.4