Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1

/HVVRQ7KH&ODVVL¿FDWLRQRI7ULDQJOHV


Solution
D௘ͽ 7KHWULDQJOHLVFOHDUO\LVRVFHOHV$QGEHFDXVH^2 + 7^2! 72 WKHODUJHVWDQJOHLQWKHWULDQJOHͼ௘RQH
RSSRVLWHDVLGHOHQJWKRI௘ͽLVDFXWH7KXVDOOWKUHHLQWHULRUDQJOHVDUHDFXWHDQGLWLVDQDFXWHLVRVFHOHV
triangle.
E௘ͽ $WULDQJOHIRUH[DPSOHLVLVRVFHOHVDQGREWXVHͼ௘EHFDXVH^2 + 2^2! 32 ௘ͽ$ 2 triangle is
isosceles and right.
F௘ͽ $WULDQJOHGRHVQRWH[LVWͼ௘7KLVLVEHFDXVHLVQRWODUJHU
WKDQ௘ͽ
Example 3
What is the value of yDQGZK\"ͼ௘6HHFigure 15.3௘ͽ
Solution
Angle y is part of a    triangle, and because
22  3522 =, it is a right angle.
Example 4
What are the values of z and w"([SODLQͼ௘6HHFigure 15.4௘ͽ
Solution
7KHWZRWULDQJOHVDUHVLPLODUE\6$6ͼ௘YHUWLFDODQJOHVDQGWKH
VLGHVDQGDQGDQGFRPHLQDUDWLR௘ͽ7KXVz = 36.
Because 15^2 + 36^2 = 39^2 , we have w = 90°.
Study Tip
x ,WLVGLI¿FXOWWRPHPRUL]HWKHIROORZLQJ³,Ia^2 + b^2! c^2 , then the angle is ... .” Instead, hold on to the
image of the three squares on a right triangle and imagine how the area of the largest square changes as
the right angle is decreased to an acute angle or increased to an obtuse angle.
Pitfall
x Save some work and apply the “a^2 + b^2 versus c^2 ́DQDO\VLVWRRQO\RQHDQJOHLQDJLYHQWULDQJOH²
namely, the largest one, opposite the largest side of the triangle.

y^3

2

2


3


Figure 15.3

w
z

24 10 15


(^2639)
Figure 15.4

Free download pdf