Lesson 17: Trigonometry through Right Triangles
Trigonometry through Right Triangles
Lesson 17
Topics
x The sine, cosine, and tangent of angles via ratios of side lengths of right triangles.
x Applications.
'H¿QLWLRQV
x FRVLQHRIDQDQJOHͼLQWULJRQRPHWU\ͽ: If x is a non–right angle in a right triangle, then the ratio of the
length of the side of the triangle adjacent to the angle xͼGLIIHUHQWIURPWKHK\SRWHQXVHͽWRWKHOHQJWKRI
the hypotenuse of the right triangle is called the cosine of the angle and is denoted cos x.ͼ7KLVYDOXH
PDWFKHVWKH³RYHUQHVV ́RIDSRLQWRQDXQLWFLUFOHZLWKDQJOHRIHOHYDWLRQxͽ
x VLQHRIDQDQJOHͼLQWULJRQRPHWU\ͽ: If x is a non–right angle in a right triangle, then the ratio of the
length of the side of the triangle opposite angle x to the length of the hypotenuse of the right triangle is
called the sine of the angle and is denoted sin x.ͼ7KLVYDOXHPDWFKHVWKHKHLJKWRIDSRLQWRQDXQLW
circle with angle of elevation xͽ
x WDQJHQWRIDQDQJOHͼLQWULJRQRPHWU\ͽ: If x is a non–right angle in a right triangle, then the ratio of
the length of the side of the triangle opposite angle x to the length of the side adjacent to the angle
ͼGLIIHUHQWIURPWKHK\SRWHQXVHRIWKHULJKWWULDQJOHͽLVFDOOHGWKHWDQJHQWRIWKHDQJOHDQGLVGHQRWHG
tan x.
Formulas
x sin x opphyp.
x cos x (^) hypadj.
x tan x oppadj sincos^ xx.
Summary
%\VKLIWLQJWKHIRFXVIURPFLUFOHVWRULJKWWULDQJOHVWKHWKHRU\RI³FLUFOHRPHWU\ ́LVWUDQVIRUPHGLQWRRQHZLWK
QDWXUDODSSOLFDWLRQVWRDUFKLWHFWXUHVXUYH\LQJDQGHQJLQHHULQJ,QWKLVOHVVRQZHGH¿QHWKHVLQHDQGFRVLQH
ͼDQGWDQJHQWͽLQWKHVHWWLQJRIULJKWWULDQJOHVDQGH[KLELWVRPHSUDFWLFDODSSOLFDWLRQVRIWKHVHUDWLRV