Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1

Lesson 17: Trigonometry through Right Triangles


Trigonometry through Right Triangles
Lesson 17

Topics
x The sine, cosine, and tangent of angles via ratios of side lengths of right triangles.
x Applications.
'H¿QLWLRQV
x FRVLQHRIDQDQJOHͼ௘LQWULJRQRPHWU\௘ͽ: If x is a non–right angle in a right triangle, then the ratio of the
length of the side of the triangle adjacent to the angle xͼ௘GLIIHUHQWIURPWKHK\SRWHQXVH௘ͽWRWKHOHQJWKRI
the hypotenuse of the right triangle is called the cosine of the angle and is denoted cos x.ͼ௘7KLVYDOXH
PDWFKHVWKH³RYHUQHVV ́RIDSRLQWRQDXQLWFLUFOHZLWKDQJOHRIHOHYDWLRQx௘ͽ
x VLQHRIDQDQJOHͼ௘LQWULJRQRPHWU\௘ͽ: If x is a non–right angle in a right triangle, then the ratio of the
length of the side of the triangle opposite angle x to the length of the hypotenuse of the right triangle is
called the sine of the angle and is denoted sin x.ͼ௘7KLVYDOXHPDWFKHVWKHKHLJKWRIDSRLQWRQDXQLW
circle with angle of elevation x௘ͽ
x WDQJHQWRIDQDQJOHͼ௘LQWULJRQRPHWU\௘ͽ: If x is a non–right angle in a right triangle, then the ratio of
the length of the side of the triangle opposite angle x to the length of the side adjacent to the angle
ͼ௘GLIIHUHQWIURPWKHK\SRWHQXVHRIWKHULJKWWULDQJOH௘ͽLVFDOOHGWKHWDQJHQWRIWKHDQJOHDQGLVGHQRWHG
tan x.
Formulas
x sin x opphyp.

x cos x (^) hypadj.
x tan x oppadj sincos^ xx.
Summary
%\VKLIWLQJWKHIRFXVIURPFLUFOHVWRULJKWWULDQJOHVWKHWKHRU\RI³FLUFOHRPHWU\ ́LVWUDQVIRUPHGLQWRRQHZLWK
QDWXUDODSSOLFDWLRQVWRDUFKLWHFWXUHVXUYH\LQJDQGHQJLQHHULQJ,QWKLVOHVVRQZHGH¿QHWKHVLQHDQGFRVLQH
ͼ௘DQGWDQJHQW௘ͽLQWKHVHWWLQJRIULJKWWULDQJOHVDQGH[KLELWVRPHSUDFWLFDODSSOLFDWLRQVRIWKHVHUDWLRV

Free download pdf