DHARM
STABILITY OF EARTH SLOPES 335
The shear resistance (stress) mobilised is:
τ =
cu
F
′+()tanσφn− ′
Total normal stress σn on the base of the slice = P/ls
∴τ =
1
F
[{(/)}tan]cPlu′+ s − φ′
Shearing force acting on the base of the slice, S = τls.
For equilibrium,
Sliding moment = Restoring moment
or ΣW. x = ΣS.r = Στ.ls.r
=
r
F
Σ[( )tan]cl′+ −ssP ul φ′
∴ F =
r
Wx
clssP ul
Σ
Σ[( )tan]′+ − φ′ ...(Eq. 9.29)
Let the normal effective force, P′ = (P – uls)
Resolving the forces vertically,
W = P cos α + S sin α ...(Eq. 9.30)
(The vertical components of Rn and Rn + 1 are taken to be equal and hence to be nullify-
ing each other, the error from this assumption being considered negligible). Here P = P′ + uls
S = 1/F (c′ls + P′ tan φ′)
Substituting these values of P and S in Eq. 9.30, we have:
W = (P′ + uls) cos α +
(tan)sincl P
F
′+′s φα′
= P
F
′+F ′ lus cF
HG
I
KJ
cosα tanφsinαα α++′{ cos ( / ) sin }
∴ P′ =
Wlus cF
F
−+′
+ ′
{ cos ( / ) sin }
cos tan sin
αα
α φα
...(Eq. 9.31)
Substituting this value of P′ for (P – uls) in Eq. 9.29, we get
F =
r
Wx
clssW ul clF
F
s
Σ
Σ
′+ − − ′
+
L
N
M
M
M
O
Q
P
P
P
′
′
cos sin tan
cos tan sin
ααφ
α φα
ej
ej
...(Eq. 9.32)
Here x = r sin α
b = ls cos α
ub
W
u
z
=
γ
= ru
Substituting these into Eq. 9.32,
F =
(^11)
Σ 1
Σ
W
cb W ru
sin F
{()tan}sectan tan
α
′+ − φ′ φαα
- L
N
M
M
M
O
Q
P
P
P
′
ej
...(Eq. 9.33)