DHARMSTABILITY OF EARTH SLOPES 335
The shear resistance (stress) mobilised is:τ =cu
F′+()tanσφn− ′Total normal stress σn on the base of the slice = P/ls∴τ =1
F[{(/)}tan]cPlu′+ s − φ′
Shearing force acting on the base of the slice, S = τls.
For equilibrium,
Sliding moment = Restoring momentor ΣW. x = ΣS.r = Στ.ls.r
=r
FΣ[( )tan]cl′+ −ssP ul φ′∴ F =r
WxclssP ul
ΣΣ[( )tan]′+ − φ′ ...(Eq. 9.29)Let the normal effective force, P′ = (P – uls)
Resolving the forces vertically,
W = P cos α + S sin α ...(Eq. 9.30)
(The vertical components of Rn and Rn + 1 are taken to be equal and hence to be nullify-
ing each other, the error from this assumption being considered negligible). Here P = P′ + uls
S = 1/F (c′ls + P′ tan φ′)
Substituting these values of P and S in Eq. 9.30, we have:W = (P′ + uls) cos α +(tan)sincl P
F′+′s φα′= P
F′+F ′ lus cF
HGI
KJcosα tanφsinαα α++′{ cos ( / ) sin }∴ P′ =Wlus cFF−+′
+ ′{ cos ( / ) sin }
cos tan sinαα
α φα...(Eq. 9.31)Substituting this value of P′ for (P – uls) in Eq. 9.29, we getF =r
WxclssW ul clFFsΣΣ′+ − − ′+L
N
M
M
MO
Q
P
P
P′′cos sin tancos tan sinααφα φαej
ej
...(Eq. 9.32)Here x = r sin α
b = ls cos α
ub
Wu
z=
γ= ruSubstituting these into Eq. 9.32,F =(^11)
Σ 1
Σ
W
cb W ru
sin F
{()tan}sectan tan
α
′+ − φ′ φαα
- L
N
M
M
M
O
Q
P
P
P
′
ej
...(Eq. 9.33)