Geotechnical Engineering

(Jeff_L) #1
DHARM

STABILITY OF EARTH SLOPES 335


The shear resistance (stress) mobilised is:

τ =

cu
F

′+()tanσφn− ′

Total normal stress σn on the base of the slice = P/ls

∴τ =

1
F

[{(/)}tan]cPlu′+ s − φ′
Shearing force acting on the base of the slice, S = τls.
For equilibrium,
Sliding moment = Restoring moment

or ΣW. x = ΣS.r = Στ.ls.r


=

r
F

Σ[( )tan]cl′+ −ssP ul φ′

∴ F =

r
Wx

clssP ul
Σ

Σ[( )tan]′+ − φ′ ...(Eq. 9.29)

Let the normal effective force, P′ = (P – uls)
Resolving the forces vertically,
W = P cos α + S sin α ...(Eq. 9.30)
(The vertical components of Rn and Rn + 1 are taken to be equal and hence to be nullify-
ing each other, the error from this assumption being considered negligible). Here P = P′ + uls


S = 1/F (c′ls + P′ tan φ′)
Substituting these values of P and S in Eq. 9.30, we have:

W = (P′ + uls) cos α +

(tan)sincl P
F

′+′s φα′

= P
F

′+F ′ lus cF
HG

I
KJ

cosα tanφsinαα α++′{ cos ( / ) sin }

∴ P′ =

Wlus cF

F

−+′
+ ′

{ cos ( / ) sin }
cos tan sin

αα
α φα

...(Eq. 9.31)

Substituting this value of P′ for (P – uls) in Eq. 9.29, we get

F =

r
Wx

clssW ul clF

F

s

Σ

Σ

′+ − − ′

+

L


N


M
M
M

O


Q


P
P
P



cos sin tan

cos tan sin

ααφ

α φα

ej


ej


...(Eq. 9.32)

Here x = r sin α
b = ls cos α
ub
W

u
z

=
γ

= ru

Substituting these into Eq. 9.32,

F =

(^11)
Σ 1
Σ
W
cb W ru
sin F
{()tan}sectan tan
α
′+ − φ′ φαα



  • L
    N
    M
    M
    M
    O
    Q
    P
    P
    P

    ej
    ...(Eq. 9.33)

Free download pdf