DHARM354 GEOTECHNICAL ENGINEERINGshear stress acts. In Fig. 10.1 (c), the cylindrical co-ordinates and the corresponding normal
stresses—radial stress σr, tangential stress σt, and the shear stress τrz—are shown; σz is an-
other principal stress in the cylindrical co-ordinates; the polar radial stress σR is also shown.
R= x+y+z
Ö
222r= x +y
Ö 22ysyzsx AY Z¢Z¢Q
OY¢x
X¢ Xq(a) (b) (c)sztzx
tzy
sx
tyz txy
tyx
syZQsRtrzsrst
Z¢sztxzqFig. 10.1 Notation for Boussinesq’s analysis
The Boussinesq equations are as follows:σz =3
23
5Qz
π R. ...(Eq. 10.2 (a))
=3
22
2Q
π zθ
.cos
...(Eq. 10.2 (b))=3
23
2252Qz
π rz.
()+ /...(Eq. 10.2 (c))=3
21(^221)
52
Q
π+zrz
L
N
M
M
O
Q
P
(/ )P
/
...(Eq. 10.2 (d))
σx = Qxz
R
xy
Rr R z
yz
(^2) Rr
(^3212)
5
22
2
2
π −−υ^32
−
R
S
T
U
V
W
L
N
M
M
O
Q
P
P
()
()
...(Eq. 10.3)
σy =
Qyz
R
yx
Rr R z
xz
(^2) Rr
(^3212)
5
22
2
2
π −−υ^32
−
R
S
T
U
V
W
L
N
M
M
O
Q
P
P
()
()
...(Eq. 10.4)
σR =
3
2 2
Q
π R
.cosθ
...(Eq. 10.5)
σr =
Qzr
(^2) R RR z
3122
π^2
− − υ
L
N
M
O
Q
P
()
()
...(Eq. 10.6 (a))