DHARM474 GEOTECHNICAL ENGINEERING
Pa
y
yad=( – )W
R(180° –yqf– + )N (–)qf
f
S
RWSliding
wedgeB b Ruptureplane or
sliding
surfaceDH(–)qfSurface of the fillWall
+dH/3Pay
aVerticalq
A
(a) Sliding wedge (b) Force triangle
Fig. 13.19 Active earth pressure of cohesionless soil—Coulomb’s theory
The triangle of forces is shown in Fig. 13.19 (b). With the nomenclature of Fig. 13.19,
one may proceed as follows for the determination of the active thrust, Pa:
W = γ (area of wedge ABC)∆ABC =1
2AC. BD, BD being the altitude on to AC.AC = AB.sin( )
sin( )αβ
θβ+
−
BD = AB. sin (α + θ)AB =H
sinα
Substituting and simplifying,W = γ
αθα αβ
θβH^2
2sin^2 .sin( ).sin( )
sin( )+ +
−...(Eq. 13.3)From the triangles of forces,
Pa
sin(θφ− )=W
sin( 180 °−ψθφ− +)∴ Pa = W.sin( )
sin( )θφ
ψθφ−
180 °− − +
Substituting for W,Pa =1
2 1802
2γ
αθφ
ψθφθα αβ
θβH
sin. sin( )
sin( )
.sin( ).sin( )
sin( )−
°− − +++
−...(Eq. 13.32)The maximum value of Pa is obtained by equating the first derivative of Pa with respect
to θ to zero;
or
∂
∂θPa
= 0, and substituting the corresponding value of θ.