Geotechnical Engineering

(Jeff_L) #1
DHARM

LATERAL EARTH PRESSURE AND STABILITY OF RETAINING WALLS 479


B b
W

Sliding wedge

D

R
N

f
S
(+)qf

H
Ppyyd(= + )

W
(180° –yqf– – )
(+)qf

H/3

Pp
+d
y
a
A
(a) Sliding wedge (b) Force triangle

C

Fig. 13.24 Passive earth pressure of cohesionless soil—Coulomb’s theory

∴ Pp = W.

sin( )
sin( )

θφ
ψθφ

+
180 °− − −
Substituting for W,

Pp =

1
2 180

2
.sin 2 .sin( ).
sin( )
sin( )

. sin( )
sin( )


γ
α

θα

αβ
θβ

θα
ψθφ

H
+

+

+
°− − −

...(Eq. 13.38)

The minimum value of Pp is obtained by differentiating Eq. 13.38 with respect to θ

equating



∂θ

Pp
to zero, and substituting the corresponding value of θ.

The value of Pp so obtained may be written as

Pp =

1
2

γHK^2

. p


where Kp =


sin ( )

sin .sin( )

sin( ).sin( )
sin( ).sin( )

2

2

2
1

αφ

ααδ

θδ φβ
αδ αβ


+−

++
++

L


N


M
M

O


Q


P
P

...(Eq. 13.39)

KP being the coefficient of passive earth resistance.


For a vertical wall retaining a horizontal backfill and for which the friction is equal to φ,
α = 90°, β = 0°, and δ = φ, and Kp reduces to

Kp =

cos

cos sin cos .sin
cos

2
2
1 2

φ

φ

φφ φ
φ


L


N


M
M

O


Q


P
P

or Kp =


cos
(sin)

φ
12 − φ^2

...(Eq. 13.40)
Free download pdf