DHARMLATERAL EARTH PRESSURE AND STABILITY OF RETAINING WALLS 479
B b
WSliding wedgeDR
Nf
S
(+)qfH
Ppyyd(= + )W
(180° –yqf– – )
(+)qfH/3Pp
+d
y
a
A
(a) Sliding wedge (b) Force triangleCFig. 13.24 Passive earth pressure of cohesionless soil—Coulomb’s theory∴ Pp = W.sin( )
sin( )θφ
ψθφ+
180 °− − −
Substituting for W,Pp =1
2 1802
.sin 2 .sin( ).
sin( )
sin( ). sin( )
sin( )
γ
αθααβ
θβθα
ψθφH
++
−+
°− − −...(Eq. 13.38)The minimum value of Pp is obtained by differentiating Eq. 13.38 with respect to θequating
∂
∂θPp
to zero, and substituting the corresponding value of θ.The value of Pp so obtained may be written asPp =1
2γHK^2. p
where Kp =
sin ( )sin .sin( )sin( ).sin( )
sin( ).sin( )222
1αφααδθδ φβ
αδ αβ−+−++
++L
N
M
MO
Q
P
P...(Eq. 13.39)KP being the coefficient of passive earth resistance.
For a vertical wall retaining a horizontal backfill and for which the friction is equal to φ,
α = 90°, β = 0°, and δ = φ, and Kp reduces toKp =coscos sin cos .sin
cos2
2
1 2φφφφ φ
φ−L
N
M
MO
Q
P
Por Kp =
cos
(sin)φ
12 − φ^2...(Eq. 13.40)