DHARM
LATERAL EARTH PRESSURE AND STABILITY OF RETAINING WALLS 525
Since wall friction is to be accounted for, Coulomb’s theory is to be applied.
γ = 18 kN/m^3 and H = 12 m
Ka =
sin ( )
sin .sin( ) sin( ).sin( )
sin( ).sin( )
2
2
2
1
αφ
ααδ φδ φβ
αδ αβ
+
−+ +−
−+
L
N
M
M
O
Q
P
P
α = 90° and β = 0° in this case. φ = 30° and δ = 20°
∴ Ka =
cos
cos sin( ).sin
cos
2
2
1
φ
δ φδ φ
δ
+ +
L
N
M
M
O
Q
P
P
=
cos
cos sin .sin
cos
2
2
30
20 1^5030
20
°
°+ °°
°
L
N
M
M
O
Q
P
P
= 0.132
Kp =
sin ( )
sin .sin( ) sin( ).sin( )
sin( ).sin( )
2
2
2
1
αφ
ααδ φδ φβ
αδ αβ
−
+− ++
++
L
N
M
M
O
Q
P
P
Putting α = 90° and β = 0°,
Kp =
cos
cos
sin( ).sin
cos
2
2
2
1
φ
δ
φδ φ
δ
−
L +
N
M
M
O
Q
P
P
=
cos
cos sin .sin
cos
2
2
30
20 1^5030
20
°
°− °°
°
L
N
M
M
O
Q
P
P
= 2.713
Pa =
1
2
1
2
γHK^22 ..a=× × ×18 12 (^0132) = 171 kN/m
Pp =
1
2
1
2
γHK^22 ..p=× × ×18 12 2 713 = 3.516 kN/m.
Both Pa and Pp act at a height of (1/3)H or 4 m above the base of the wall and are
inclined at 20° above and below the horizontal, respectively.
Example 13.16: A retaining wall is battered away from the fill from bottom to top at an angle
of 15° with the vertical. Height of the wall is 6 m. The fill slopes upwards at an angle 15° away
from the rest of the wall. The friction angle is 30° and wall friction angle is 15°. Using Cou-
lomb’s wedge theory, determined the total active and passive thrusts on the wall, per lineal
metre assuming γ = 20 kN/m^3.
H = 6 m
β = 15°
α = 75° from Fig. 13.61