4.2. MOMENT GENERATING FUNCTIONS 131
for all valuestfor which the integral converges.
Example.Thedegenerate probability distributionhas all the probability
concentrated at a single point. That is, ifXis a degenerate random variable
with the degenerate probability distribution, thenX=μwith probability 1
andXis any other value with probability 0. That is, the degenerate random
variable is a discrete random variable exhibiting certainty of outcome. The
moment generating function of the degenerate random variable is particularly
simple: ∑
xi=μexit=eμt.If the moments of orderkexist for 0≤k≤k 0 , then the moment gen-
erating function is continuously differentiable up to orderk 0 att= 0. The
moments ofXcan be generated fromφX(t) by repeated differentiation:
φ′X=d
dtE
[
etX]
=
d
dt∫
xetxfX(x)dx=
∫
xd
dtetxfX(x)dx=
∫
xxetxfX(x)dx=E[
XetX]
.
Then
φ′X(0) =E[X].
Likewise
φ′′X(t) =d
dtφ′X(t)=d
dt∫
xxetxfX(x)dx=
∫
xxd
dtetxfX(x)dx=
∫
xx^2 etxfX(x)dx=E[
X^2 etX